www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Länge von Vektoren
Länge von Vektoren < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Länge von Vektoren: Ansatz Aufgabe
Status: (Frage) beantwortet Status 
Datum: 09:48 Do 10.11.2011
Autor: Brombeere

Aufgabe
Gegeben seien die Punkte A, B, C und D.

a) Bestimme die Länge der Vektoren [mm] \vec{a} [/mm] = [mm] \overrightarrow{AB} [/mm] und [mm] \vec{b} [/mm] = [mm] \overrightarrow{CD} [/mm] und den Cosinus des von [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] eingeschlossenen Winkels.

b) Man berechne die Länge der Vektoren [mm] \vec{u} [/mm] = [mm] 2\vec{a} [/mm] - [mm] \vec{b} [/mm] und [mm] \vec{v} [/mm] = [mm] 3\vec{a} [/mm] + [mm] 2\vec{b} [/mm] anhand der
    1.) Rechnung mit Koordinaten,
    2.) Regeln für das Skalarprodukt und der Ergebnisse von (a).


Hallo Welt da draußen,

den Aufgabenteil a habe ich soweit bearbeitet und berechnet. Mein Problem bei Teil B ist die Aufgabenstellung. Unter Rechnung mit Koordinaten stelle ich mir vor, dass ich wie gewohnt den Betrag des Vektors nehme und die Länge anhand der x-y-z-Kompontenten bestimme, also [mm] \parallel\vec{u}\parallel [/mm] = [mm] \wurzel{x^2 + y^2 +z^2}. [/mm] Ist diese Vermutung richtig?

Keine Idee habe ich gerade bei 2. Welche Regeln soll ich hier anwenden? Ich habe wirklich keinerlei Idee. Wäre es möglich mir einen Tipp zu geben, wie ich überhaupt beginnen kann?

Vielen Dank und viele Grüße schonmal soweit.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Länge von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 10:14 Do 10.11.2011
Autor: M.Rex

Hallo


Es gilt:

[mm] \vektor{u_{1}\\u_{2}\\u_{3}}=2\cdot\vektor{a_{1}\\a_{2}\\a_{3}}+3\cdot\vektor{b_{1}\\b_{2}\\b_{3}}=\vektor{2a_{1}+3b_{1}\\2a_{2}+3b_{2}\\2a_{3}+3b_{3}} [/mm]

Und
[mm] \vektor{v_{1}\\v_{2}\\v_{3}}=3\cdot\vektor{a_{1}\\a_{2}\\a_{3}}+2\cdot\vektor{b_{1}\\b_{2}\\b_{3}}=\vektor{3a_{1}+2b_{1}\\3a_{2}+2b_{2}\\3a_{3}+2b_{3}} [/mm]

Also gilt:

[mm] |\vec{u}|=\sqrt{(2a_{1}+3b_{1})^{2}+(2a_{2}+3b_{2})^{2}+(2a_{3}+3b_{3})^{2}}=\ldots [/mm]

Und
[mm] \vec{u}\cdot\vec{v}=\vektor{2a_{1}+3b_{1}\\2a_{2}+3b_{2}\\2a_{3}+3b_{3}}\cdot\vektor{3a_{1}+2b_{1}\\3a_{2}+2b_{2}\\3a_{3}+2b_{3}}=(2a_{1}+3b_{1})(3a_{1}+2b_{1})+(2a_{2}+3b_{2})(3a_{2}+2b_{2})+(2a_{3}+3b_{3})(3a_{3}+2b_{3})=\ldots [/mm]

Bis hierher sind lediglich die Rechenregeln für Vektoren angewandt worden.

Wenn du die Regeln für das Skalarprodukt nutzt, mach dir mal klar, was

[mm] \vec{x}\cdot(\vec{y}\pm\vec{z})=\vec{x}\cdot\vec{z}\pm\vec{y}\cdot\vec{z} [/mm]

[mm] \vec{x}\cdot(\lambda\vec{y})=\lambda(\vec{x}\cdot\vec{y})=(\lambda\vec{x})\cdot\vec{y} [/mm]

Berechne damit nun [mm] \vec{u}\cdot\vec{v} [/mm]

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de