www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Lagebeziehung zw. E und G
Lagebeziehung zw. E und G < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagebeziehung zw. E und G: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 So 11.06.2006
Autor: ronallan

Aufgabe
  Gegeben seien die ebene E: x = (6 0 0) + k ( 1 0 2) + l (-1 1 0) und die Gerade g: x = ( 2 0 1) + m (2 2 -1)

Untersuche die Lagebeziehung zwischen E und G.  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt!


Man muss eigentlich E und G gleichsetzen. Das habe ich gemacht! Aber irgendwie kann ich das Gleichungsystem nicht lösen. Ich komme irgendwie nicht weiter :( Kann mir jmd helfen?

gruß
ron

        
Bezug
Lagebeziehung zw. E und G: dann keine Lösung
Status: (Antwort) fertig Status 
Datum: 17:53 So 11.06.2006
Autor: Disap

Hallo.

>  Gegeben seien die ebene E: x = (6 0 0) + k ( 1 0 2) + l
> (-1 1 0) und die Gerade g: x = ( 2 0 1) + m (2 2 -1)
>  
> Untersuche die Lagebeziehung zwischen E und G.
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt!
>  
>
> Man muss eigentlich E und G gleichsetzen. Das habe ich

So kann man es machen.

> gemacht! Aber irgendwie kann ich das Gleichungsystem nicht
> lösen. Ich komme irgendwie nicht weiter :( Kann mir jmd

Wenn es sich nicht lösen lässt, ist die Gerade parallel zur Ebene.

> helfen?

Mach es doch einfacher, kennst du das Vektor-/Kreuzprodukt?

Du musst ansonsten einfach gucken, ob das Skalarprodukt des Normalenvektors mit dem Richtungsvektor null ergibt. Wenn das Skalarprodukt Null ergibt, so ist die Ebene parallel oder identisch zur Ebene.

> gruß
> ron

Gruß
Disap

Bezug
                
Bezug
Lagebeziehung zw. E und G: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:57 So 11.06.2006
Autor: ronallan

Leider hat unser Lehrer uns das Skalarprodukt nicht beigebracht :(

Beim Gleichsetzen bekomme ich
2 + 2m = 6 + k - l
0 + 2m = l
1 - m = 2k

Wie gehts jetzt weiter?

Bezug
                        
Bezug
Lagebeziehung zw. E und G: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 So 11.06.2006
Autor: Disap


> Leider hat unser Lehrer uns das Skalarprodukt nicht
> beigebracht :(

Schade.

> Beim Gleichsetzen bekomme ich
>  2 + 2m = 6 + k - l
>  0 + 2m = l
>  1 - m = 2k

Ja, das stimmt zumindest.

> Wie gehts jetzt weiter?

Welche Verfahren kennst du denn zum Lösen von Gleichungen? Du kannst das Verfahren von Gauß nehmen, wenn du das kennst. Oder du machst es mit dem Einsetzungs-, Gleichsetzungs-, Additions-/Subtraktionsverfahren.

Ich würde das Einsetzungsverfahren bevorzugen, indem du beispielsweise Gleichung 3 nach m umstellst und dann in die anderen beiden Gleichungen einsetzt usw.
Als Kontrollergebnis erhalte ich die Lösung:

k=0
l=2
m=1

MfG!
Disap

Bezug
                                
Bezug
Lagebeziehung zw. E und G: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 So 11.06.2006
Autor: ronallan

Vielen Dank ^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de