www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Lagebeziehungen
Lagebeziehungen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagebeziehungen: Frage
Status: (Frage) beantwortet Status 
Datum: 16:33 Do 28.04.2005
Autor: bionda

Hallo,
ich hoffe ihr könnt mir helfen. Ich habe mehrere Fragen, auf die ich keine Antwort finde...
1) Warum können Ebenen im R³ nicht windschief sein?
2) Wie stellt man fest, ob 2 Geraden, eine Ebene zu einer Gerade oder eine Ebene zu einer Ebene orthogonal ist? Aber ohne diese komische Normalenform sondern in Parameterform...
3) Wie bestimme ich die Entfernung zweier Punkte im euklidischen Raum?
Würde mich über Hilfe sehr freuen.
Gruß
P.S. Ich habe diese Fragen in keinem anderen Forum gestellt.

        
Bezug
Lagebeziehungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Do 28.04.2005
Autor: Max

Hallo bionda,

>  1) Warum können Ebenen im R³ nicht windschief sein?

Naja, damit zwei Objekte windschief sind müssten sie ja im Raum aneinander vorbei gehen. Das Problem ist, dass Ebenen so breit und lang sind, so dass daran nix vorbeipasst ;-) Übrigens selbst so eine schmale schlanke Gerade kann im [mm] $\IR^3$ [/mm] nicht windschief zu einer Ebene sein.

Mathematisch gesehen führen diese Schnittprobleme zu einem linearen Gleichungssystem. Bei dem Lagebeziehung von einer Geraden zu einer Ebene führt dies zu einem GLS mit drei Gleichungen und drei Unbekannten.

[mm] $r\cdot \vec{u}+s\cdot \vec{v}+t\cdot \vec{w}=\vec{p}-\vec{q}$ [/mm]

Diese Gleichung ist genau dann eindeutig lösbar, wenn die drei Richtungsvektoren von Ebene und Gerade nicht linear abhängig ist. Damit das Gleichungssystem keine Lösung hat müsste es mindestens überbestimmt sein, dies ist aber nur der Fall, wenn einer der Richtungsvektoren linear abhängig ist zu den anderen Beiden. Dann wären Gerade und Ebene aber parallel (bzw. identisch).


>  2) Wie stellt man fest, ob 2 Geraden, eine Ebene zu einer
> Gerade oder eine Ebene zu einer Ebene orthogonal ist? Aber
> ohne diese komische Normalenform sondern in
> Parameterform...

Gar nicht. Nur das Skalarprodukt gibt die Auskunft über Winkel zwischen Vektoren! (Ansonsten finde ich die Frage sehr komisch formuliert.)



>  3) Wie bestimme ich die Entfernung zweier Punkte im
> euklidischen Raum?

Durch zweifache Anwendung des Satzes von Pythagoras kannst du zeigen, dass die Länge eines Vektors gegeben wird durch [mm] $d(\vec{x})=\sqrt{(x_1)^2+(x_2)^2+(x_3)^2}$. [/mm] Der Abstand zwischen zwei Punkten wird dann durch die Länge des Differenzvektors [mm] $\overrightarrow{PQ}$ [/mm] definiert.

Gruß Max





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de