www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Lagrange-Verfahren
Lagrange-Verfahren < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:39 Mo 12.04.2021
Autor: Mathemurmel

Aufgabe
Aufgabe:  Die Lagerkapazitäten eines Unternehmens sind aufgrund von Umbauarbeiten für eine bestimmte Zeit eingeschränkt.  Die normale Gewinnfunktion lautet:
       f(x,y)  =  160x – 3x² - xy – 2y² + 240y – 665
mit   x = Menge von Produkt 1   und   y = Menge von Produkt 2 .  Die eingeschränkte Lagerfläche beträgt nun 40m².  Produkt 1  benötigt  1m²  und Produkt 2  benötigt  2m²  Lagerfläche pro Einheit.  Gesucht sind die Mengen beider Produkte, die unter Berücksichtigung der eingeschränkten Lagerfläche zum maximalen Gewinn führen.

Lösung der Aufgabe mithilfe des Lagrange-Verfahrens:

1)   die Lagrange-Funktion haben wir schon ermittelt:
              L(x,y,λ)  =  160x – 3x² - xy – 2y² + 240y – 665 + λ (x + 2y – 40)

2)   Für die ersten partiellen Ableitungen der Lagrange-Funktion gilt:  
(∂L(x,y,λ))/∂x  =  160 – 6x – y + λ                                          (8)
(∂L(x,y,λ))/∂y  =   – x – 4y + 240 + 2λ                                     (9)
(∂L(x,y,λ))/∂λ  =  x + 2y - 40                                                 (10)

3)   Wir müssen die ersten partiellen Ableitungen  gleich  Null  setzen:
                160 – 6x – y + λ = 0                                                                    (8)
                 – x – 4y + 240 + 2λ = 0                                                               (9)
                 x + 2y – 40 = 0                                                                           (10)


Der Taschenrechner liefert die Lösung:       x = 10    y = 15     λ = – 85
In der zur Aufgabe gehörigen Lösung steht:
Unter der Annahme, dass die stationäre Stelle  [mm] (x_0, y_0) [/mm] = (10,15)  zum Gewinnmaximum führt, handelt es sich um die gesuchte Maximalstelle.

Meine Frage dazu:
Ist Folgendes richtig?:  mithilfe der Lagrange-Funktion kann ich nur die stationäre Stelle (den Kandidaten für Minimum oder Maximum) ermitteln.
Ob es ein Minimum oder ein Maximum ist, liefert die Lagrange-Funktion jedoch nicht.
D.h.  für die Maximum-Bestimmung  kann ich mit der Lagrange-Funktion nur die notwendige Bedingung bearbeiten, nicht die hinreichende.
Ist das richtig so? Kann ein Minimum, ein Maximum oder ein Sattelpunkt vorliegen wie im eindimesionalen


        
Bezug
Lagrange-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Mo 12.04.2021
Autor: Gonozal_IX

Hiho,

> Meine Frage dazu:
>  Ist Folgendes richtig?:  mithilfe der Lagrange-Funktion
> kann ich nur die stationäre Stelle (den Kandidaten für
> Minimum oder Maximum) ermitteln.

Nein.

>  Ob es ein Minimum oder ein Maximum ist, liefert die
> Lagrange-Funktion jedoch nicht.

Doch, wenn du weiter machen würdest und die zweite Ableitung untersuchst, kannst du auch darüber Aussagen treffen.

>  D.h.  für die Maximum-Bestimmung  kann ich mit der
> Lagrange-Funktion nur die notwendige Bedingung bearbeiten,
> nicht die hinreichende.
>  Ist das richtig so? Kann ein Minimum, ein Maximum oder ein
> Sattelpunkt vorliegen wie im eindimesionalen

Das Vorgehen wäre genauso wie im Eindimensionalen: Zweite Ableitung untersuchen.
Das ist hier halt die Hesse-Matrix.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de