www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Lagrange
Lagrange < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange: Nullstellenbestimmung
Status: (Frage) beantwortet Status 
Datum: 13:58 Mi 12.07.2006
Autor: Fistler

Aufgabe
  [mm] x_{1}= (x_{2} [/mm] / [mm] x_{1}) [/mm] + [mm] (x_{2}^2 [/mm] / [mm] x_{1}) [/mm] - 1

Hallo,

habe das Problem, dass ich die Gleichung

[mm] x_{1}= (x_{2} [/mm] / [mm] x_{1}) [/mm] + [mm] (x_{2}^2 [/mm] / [mm] x_{1}) [/mm] - 1

nicht nach einem x auflösen kann um die Nullstellen zu bestimmen.

Hat jemand einen Lösungsvorschlag?

Dank!

        
Bezug
Lagrange: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Mi 12.07.2006
Autor: Event_Horizon

[mm] $x_{1}= \bruch{x_{2}}{x_{1}} [/mm] + [mm] \bruch{x_{2}^2}{x_{1}}- [/mm] 1$

Um [mm] x_2 [/mm] zu berechnen, solltest du erstmal alles auf eine Seite bringen und sortieren:

$0= [mm] \bruch{x_{2}}{x_{1}} [/mm] + [mm] \bruch{x_{2}^2}{x_{1}}- 1-x_{1}$ [/mm]

$0=  [mm] \bruch{1}{x_{1}}*x_{2}^2+\bruch{1}{x_{1}}*x_{2}+(- 1-x_{1})$ [/mm]

wenn du nun die gesamte Gleichung mit [mm] x_1 [/mm] multiplizierst, kannst du die pq-Formel anwenden:

$0=  [mm] x_{2}^2+x_{2}+(- x_{1}-x_{1}^2)$ [/mm]

Allerdings kannst du deine Formel auch so umformen:

[mm] $x_1^2+x_1=x_2^2+x_2$ [/mm]

Und das ist gleichbedeutend mit [mm] $x_1=x_2$ [/mm]


Bezug
                
Bezug
Lagrange: weitere Frage
Status: (Frage) beantwortet Status 
Datum: 14:58 Mi 12.07.2006
Autor: Fistler

Hallo, vielen Dank für die Antwort!

Aber warum ist das gleichbedeutend mit [mm] x_1? [/mm]



Bezug
                        
Bezug
Lagrange: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Mi 12.07.2006
Autor: Event_Horizon

Oh, du hast ja recht.
[mm] $x_1=x_2$ [/mm] ist nur eine Lösung. Eine weitere ist

[mm] x_1=-0.5+a [/mm] und [mm] x_2=-0.5-a [/mm]

Dies wird klar, wenn man x²+x mal als Parabel betrachtet. Meine vorletzte Gleichung fragt dann nach den x-Werten, für die die y-Werte gleich sind. Der Scheitel der Parabel ist bei -0.5, demnach bekommt man gleiche y-Werte, wenn man nach rechts und links gleich weit, also a Einheiten geht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de