Lagrange < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 11:05 Mo 17.11.2008 | Autor: | Zweiti |
Aufgabe | Wir betrachten eine Maschine zur Ziehung von n Lotto-Zahlen. Die Wahrscheinlichkeit, dass die Kugel mit der Zahl k gezogen wird bezeichnen wir mit [mm] p_{k}. [/mm] Die Unordnung einer Maschine ist definiert als die Größe [mm] (\bruch{1}{p_{1}})^{p_{1}}\*(\bruch{1}{p_{2}})^{p_{2}}\*\ldots\*(\bruch{1}{p_{n}})^{p_{n}}
[/mm]
a) Eine Maschine ist tadellos, wenn in jeder Ziehung eine der Kugeln gezogen wird, d.h. [mm] p_{1}+p_{2}+\ldots+p_{n}=1. [/mm] Unter allen tadellosen Maschinen wird die als fair bezeichnet, welche die größte Unordnung hat. Wie sehen faire, tadellose Maschinen aus? Wieviele gibt es?
b) Eine Maschine klemmt ab und zu, wenn [mm] p_{1}+p_{2}+\ldots+p_{n}\le1 [/mm] gilt. Wie sehen faire, ab und zu klemmende Maschinen aus? Wieviele gibt es?
c) Welcher Maschinentyp ist fairer? Anders: Ist für festes n die Unordnung der fairen, tadellosen oder die Unordnung der fairen ab und zu klemmenden Maschine größer? |
Hallo,
also ich weiß bei dieser Aufgabe eigentlich nur das ich sie mit Lagrange lösen soll, und deshalb nehme ich an das die Bedingung in Aufgabe a eine Nebenbedingung ist. Mein Tutor hat außerdem gesagt, wir sollen für die Funktion einen Logarithmus benutzen, aber damit kann ich leider gar nichts anfangen.
Für Hilfe und Tipps wäre ich dankbar.
Zweiti
Die Frage habe ich nur in diesem Forum gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:20 Mi 19.11.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|