www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Lagrange II
Lagrange II < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange II: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:50 Mo 10.03.2008
Autor: Phecda

hi
die lagrangegl II ist ja ne prima sache,
nur ist es nicht enorm schwer generalisierte koordinaten zu finden für iein problem?

was ist da die grundstrategie, damit die differentialgleichungen nicht beliebig kompliziert werden?

mfg


        
Bezug
Lagrange II: Antwort
Status: (Antwort) fertig Status 
Datum: 11:33 Di 11.03.2008
Autor: Event_Horizon

Hallo!

Ich denke mal, es ist so ähnlich wie bei der Substitution bei der Integralrechnung. Es ist nicht ganz einfas was zu finden, und erfordert oft ein gewisses Gespühr oder eine gewisse Erfahrung. Aber wenn man dann was anständiges gefunden hat, ist es Gold wert.

ich denke mal, ein guter Ansatz ist, wenn deine neuen Koordinaten die Bewegung einfacher, mit möglichst wenigen Parametern beschreiben, wobei die parameter auch möglichst nicht in all zu komplizierten Formeln da stehen sollten. Oft sieht man ja auch schon, daß ein Problem in Zylinder- oder Kugelkoordinaten einfacher parametrisierbar ist. Während es anschließend oft schwer wird, die Newtonschen Gleichungen aufzustellen, hat man mit Lagrange weniger Probleme.


Bezug
        
Bezug
Lagrange II: Antwort
Status: (Antwort) fertig Status 
Datum: 01:07 Mi 12.03.2008
Autor: rainerS

Hallo!

> hi
>  die lagrangegl II ist ja ne prima sache,
> nur ist es nicht enorm schwer generalisierte koordinaten zu
> finden für iein problem?
>  
> was ist da die grundstrategie, damit die
> differentialgleichungen nicht beliebig kompliziert werden?

Ganz wesentlich ist hier: die generalisierten Koordinaten der Lagrangeschen Methode 2. Art dienen dazu, die Zwangsbedingungen loszuwerden. Nimm das Beispiel eines Seils, das über eine Rolle läuft und an dessen Enden je eine Mass hängt. Das System hat einen Freiheitsgrad. Im Lagrangeformalismus 1. Art hast du die Koordinaten der beiden Massen und die Zwangsbedingung. Das ergibt drei gekoppelte Gleichungen. Im Lagrangeformalismus 2. Art hast du nur noch eine generalisierte Koordinate und eine Gleichung.

In diesem einfachen Fall ist es einfach, eine passende generalisierte Koordinate zu finden. Wie Event_Horizon schon schrieb, gibt es keine starre Vorschrift, wie vorzugehen ist. In der Regel schaut man nach Symmetrien des physikalischen Systems. Beispiel: Planetenbahnen. Da die Kraft zwischen Planet und Zentralgestirn in gleicher Weise auf beide wirkt, bietet es sich an, als generalisierte Koordinaten die Koordinaten des Schwerpunkts und die Komponenten des Abstandsvektors zu nehmen. Wenn es um die Drehbewegung eines Rotationskörpers geht, bieten sich die Winkel der Drehung um die Symmetrieachsen an.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de