Lagrange Interpolation < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 15:47 Do 11.05.2006 | Autor: | Wendy |
Aufgabe | (a) Es sei n [mm] \in \IN [/mm] fest gewählt. Die Polynome f [mm] \in [/mm] K[x] vom Grad [mm] \le [/mm] n bilden bekanntlich einen (n+1) dimensionalen Unterraum [mm] K_{n} [/mm] [x] von K[x] (mit Basis [mm] {1,x,...,x^{n}}). [/mm] Nun seien [mm] a_{0},..., a_{n} [/mm] paarweise verschiedene Elemente aus K (die sog. Stützstellen).
Für 0 [mm] \le [/mm] i [mm] \le [/mm] n definieren wir die Polynome [mm] g_{i} \in K_{n}[x] [/mm] durch [mm] g_{i}= \produkt_{k=0, k \not=i}^{n} \bruch{x-a_{k}}{a_{i}-a_{k}}.
[/mm]
Zeigen Sie: Auch die [mm] g_{i} [/mm] bilden eine Basis von [mm] K_{n}[x]. [/mm] (Tip: Berechnen Sie [mm] g_{i}.
[/mm]
(b) Zeigen Sie, dass es zu (nicht notwendig verschiedenen) Elementen [mm] b_{0},...,b_{n} \in [/mm] K stets genau ein g [mm] \in K_{n}[x] [/mm] gibt mit [mm] g(a_{i})=b_{i} [/mm] für i=0,...,n.
(c) Folgern Sie: Ist K ein Körper mit [mm] |K|=q<\infty, [/mm] so ist jede Abbildung f: K--> K als Polynomfunktion mit einem Polynom aus [mm] K_{q-1}[x] [/mm] darstellbar.
(d) Nun sei [mm] K=\IZ/5\IZ [/mm] und [mm] f(a)=\begin{cases} a^{-1}, & \mbox{falls } a \not=0\mbox{ } \\ 0, & \mbox{falls } a=0 \mbox{ } \end{cases} [/mm] .
Stellen Sie die Polynomfunktion dar. |
Hallo ihr Lieben!!!
Muss euch schon wieder mit einer Aufgabe quälen und ich hoffe, ihr könnt mir helfen... Für jeden Tipp, Hinweis, Erklärungsversuch,... wäre ich euch dankbar...
Wendy
|
|
|
|
Hallo!
Bin selbst recht neu auf dem Gebiet und nicht gerade eine Leuchte, aber vielleicht kann ich dir ein kleines Bisschen helfen:
> (a) Es sei n [mm]\in \IN[/mm] fest gewählt. Die Polynome f [mm]\in[/mm] K[x]
> vom Grad [mm]\le[/mm] n bilden bekanntlich einen (n+1) dimensionalen
> Unterraum [mm]K_{n}[/mm] [x] von K[x] (mit Basis [mm]{1,x,...,x^{n}}).[/mm]
> Nun seien [mm]a_{0},..., a_{n}[/mm] paarweise verschiedene Elemente
> aus K (die sog. Stützstellen).
> Für 0 [mm]\le[/mm] i [mm]\le[/mm] n definieren wir die Polynome [mm]g_{i} \in K_{n}[x][/mm]
> durch [mm]g_{i}= \produkt_{k=0, k \not=i}^{n} \bruch{x-a_{k}}{a_{i}-a_{k}}.[/mm]
>
> Zeigen Sie: Auch die [mm]g_{i}[/mm] bilden eine Basis von [mm]K_{n}[x].[/mm]
> (Tip: Berechnen Sie [mm]g_{i}.[/mm]
Wenn du die [mm] g_i [/mm] berechnest, fällt da glaube ich immer etwas weg. Hast du das mal ausprobiert?
> (b) Zeigen Sie, dass es zu (nicht notwendig verschiedenen)
> Elementen [mm]b_{0},...,b_{n} \in[/mm] K stets genau ein g [mm]\in K_{n}[x][/mm]
> gibt mit [mm]g(a_{i})=b_{i}[/mm] für i=0,...,n.
Das bedeutet doch nichts anderes, als dass es genau ein Interpolationspolynom gibt, oder verstehe ich das jetzt falsch? Jedenfalls würde man das so machen:
Da [mm] $g\in K_n$ [/mm] ist g vom Grad n. Nehmen wir an, es gäbe zwei Interpolationspolynome [mm] g_1 [/mm] und [mm] g_2 [/mm] aus [mm] K_n [/mm] (dann hätten also beide den Grad n). Die Differenz [mm] g_1-g_2 [/mm] beider hätte ebenfalls (maximal) Grad n. Nun soll aber an den Stützstellen gelten: [mm] g_1(a_i)=b_i [/mm] und [mm] g_2(a_i)=b_i [/mm] (das ist ja genau der Sinn der Interpolation, eine Funktion (in diesem Fall ein Polynom) zu finden, das an den Stützstellen bestimmte Werte annimmt). Deswegen gilt aber: [mm] g_1(a_i)=g_2(a_i) [/mm] und somit [mm] g_1(a_i)-g_2(a_i)=0. [/mm] Da es genau (n+1) Stützstellen gibt, hat [mm] g_1-g_2 [/mm] genau (n+1) Nullstellen. Da ein Polynom vom Grad n aber maximal n Nullstellen haben kann, ist [mm] $g_1-g_2\equiv [/mm] 0$. Also gilt [mm] g_1=g_2 [/mm] und somit gibt es nur genau ein solches Polynom. Alles klar? Dies dürfte aber auch in jedem Numerik-Buch zu finden sein - unter Eindeutigkeit des Interpolationspolynoms. Oder ich habe halt die Aufgabe falsch verstanden...
> (c) Folgern Sie: Ist K ein Körper mit [mm]|K|=q<\infty,[/mm] so ist
> jede Abbildung f: K--> K als Polynomfunktion mit einem
> Polynom aus [mm]K_{q-1}[x][/mm] darstellbar.
>
> (d) Nun sei [mm]K=\IZ/5\IZ[/mm] und [mm]f(a)=\begin{cases} a^{-1}, & \mbox{falls } a \not=0\mbox{ } \\ 0, & \mbox{falls } a=0 \mbox{ } \end{cases}[/mm]
> .
> Stellen Sie die Polynomfunktion dar.
Zu dem Rest kann ich dir so direkt leider nichts sagen.
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:45 Fr 12.05.2006 | Autor: | Wendy |
Vielen lieben Dank für deine Hilfe!
Ich versuche noch zu verstehen, was da steht. Wenn ich noch fragen habe, schreib ich nochmal...
DANKE!! Lg Wendy
|
|
|
|