www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Lagrange Mult. Dreieck-Ellipse
Lagrange Mult. Dreieck-Ellipse < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange Mult. Dreieck-Ellipse: Aufgabe
Status: (Frage) überfällig Status 
Datum: 14:11 So 18.10.2009
Autor: babapapa

Aufgabe
Der Ellipse [mm] x^2 [/mm] + [mm] 9y^2 [/mm] = 9 wird ein Dreieck maximaler Fläche eingeschrieben, dessen eine Seite parallel zur großen Achse der Ellipse ist. Wie groß ist die Dreiecksfläche

Hallo!

Ich übe gerade für eine Klausur und weiß nicht, ob ich die Aufgabe richtig "angehe"...

Ich arbeite übrigens mit der Laplace Multiplikation für mehrere veränderliche.

Die allgemeine Gleichung der Ellipse ist [mm] x^2 [/mm] / [mm] a^2 [/mm] + [mm] y^2 [/mm] / [mm] b^2 [/mm] = 1
daraus folgt, dass a = 3 und b = 1.

Die Fläche für das Dreieck ist gegeben durch:
A  = h * c / 2
wobei
c = 2x
hc = y + b = y + 1

nun setze ich das in die Hauptbedingung ein:

A = 2 * x * (x + 1) / 2 = x * (y + 1)

ich muss also x * (y + 1) maximieren

Der Ansatz ist also:
[mm] \phi (x,y,\lambda) [/mm] = x  * (y +1 ) + [mm] \lambda(x^2 [/mm] / 9 + [mm] y^2 [/mm] - 1)

[mm] \phi_x [/mm] = y + 1 + [mm] \lambda [/mm] * 2x / 9
[mm] \phi_y [/mm] = x + 2* [mm] \lambda [/mm] * y => x = - 2 [mm] \lambda [/mm] y
[mm] \phi_\lambda [/mm] = [mm] (x^2 [/mm] / 9 + [mm] y^2 [/mm] - 1)

Nun bekomme ich hier aber komische Werte für [mm] \lambda, [/mm] wenn ich die erste und die zweite Gleichung für die Ermittlung der Werte (x,y) verwende.
Sieht jemand von euch einen Fehler.

Außerdem: Wie unterscheide ich bei dieser Methode zwischen Maximieren und Minimieren?

lg
Babapapa

        
Bezug
Lagrange Mult. Dreieck-Ellipse: anderer Weg
Status: (Antwort) fertig Status 
Datum: 14:40 So 18.10.2009
Autor: Al-Chwarizmi


> Der Ellipse [mm]x^2[/mm] + [mm]9y^2[/mm] = 9 wird ein Dreieck maximaler
> Fläche eingeschrieben, dessen eine Seite parallel zur
> großen Achse der Ellipse ist. Wie groß ist die
> Dreiecksfläche


Hallo babapapa,

ich sehe für diese Aufgabe einen anderen Lösungsweg,
der fast ohne Rechnung zu schaffen ist. Betrachten wir
die Affinität, welche aus der Ellipse den Kreis [mm] x^2+y^2=9 [/mm]
macht. Flächenverhältnisse bleiben dabei erhalten.
Das größte Dreieck, das in den Kreis passt, ist natürlich
das gleichseitige. Wir legen es so, dass eine Seite
parallel zur x-Achse ist. Die Berechnung der Eckpunkts-
koordinaten ist dann eine einfache Rechnung mit Pytha-
goras oder elementarer Trigonometrie.

LG    Al-Chw.


Bezug
        
Bezug
Lagrange Mult. Dreieck-Ellipse: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 So 18.10.2009
Autor: Al-Chwarizmi


> Der Ellipse [mm]x^2[/mm] + [mm]9y^2[/mm] = 9 wird ein Dreieck maximaler
> Fläche eingeschrieben, dessen eine Seite parallel zur
> großen Achse der Ellipse ist. Wie groß ist die
> Dreiecksfläche
>  Hallo!
>  
> Ich übe gerade für eine Klausur und weiß nicht, ob ich
> die Aufgabe richtig "angehe"...
>  
> Ich arbeite übrigens mit der Laplace Multiplikation für
> mehrere veränderliche.
>  
> Die allgemeine Gleichung der Ellipse ist [mm]x^2[/mm] / [mm]a^2[/mm] + [mm]y^2[/mm] /
> [mm]b^2[/mm] = 1
>  daraus folgt, dass a = 3 und b = 1.
>  
> Die Fläche für das Dreieck ist gegeben durch:
>  A  = h * c / 2
>  wobei
>  c = 2x
>  hc = y + b = y + 1
>  
> nun setze ich das in die Hauptbedingung ein:
>  
> A = 2 * x * (x + 1) / 2 = x * (y + 1)
>  
> ich muss also x * (y + 1) maximieren
>  
> Der Ansatz ist also:
>  [mm]\phi (x,y,\lambda)= x * (y +1 ) +\lambda(x^2 / 9 +y^2- 1)[/mm]

>  
> [mm]\phi_x[/mm] = y + 1 + [mm]\lambda[/mm] * 2x / 9
>  [mm]\phi_y[/mm] = x + 2* [mm]\lambda[/mm] * y => x = - 2 [mm]\lambda[/mm] y

>  [mm]\phi_\lambda[/mm] = [mm](x^2[/mm] / 9 + [mm]y^2[/mm] - 1)
>  
> Nun bekomme ich hier aber komische Werte für [mm]\lambda,[/mm] wenn
> ich die erste und die zweite Gleichung für die Ermittlung
> der Werte (x,y) verwende.
>  Sieht jemand von euch einen Fehler.
>  
> Außerdem: Wie unterscheide ich bei dieser Methode zwischen
> Maximieren und Minimieren?
>  
> lg
>  Babapapa


Ich hab mir jetzt deine Rechnung angeschaut. Einen
Fehler sehe ich bisher nicht. Du hättest dir aber z.B.
die Brüche in der Rechnung leicht ersparen können.
Setze dazu einfach

     [mm]\phi (x,y,\lambda)= x * (y +1 ) +\lambda(x^2 +9\,y^2- 9)[/mm]

Was waren denn die "komischen" Werte für [mm] \lambda [/mm] ?


Gruß    Al-Chw.


Bezug
                
Bezug
Lagrange Mult. Dreieck-Ellipse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:40 So 18.10.2009
Autor: babapapa

Hallo!

also ich komme auf:

[mm] \phi_x [/mm] = [mm] 2x\lambda [/mm] +y + 1
[mm] \phi_y [/mm] = [mm] 18y\lambda [/mm] + x
[mm] \phi_\lambda [/mm] = [mm] x^2 [/mm] + [mm] 9y^2 [/mm] - 9


aus [mm] \phi_y [/mm] ergibt sich x = -18 [mm] \lambda [/mm] y

in [mm] \phi_x [/mm] eingesetzt ergibt das:

[mm] 2(-18\lambda [/mm] y) [mm] \lambda [/mm] + y + 1 = 0
-36 [mm] \lambda^2 [/mm] y + y + 1 = 0
36 [mm] \lambda^2 [/mm] y = y + 1
[mm] \lambda [/mm] = [mm] \wurzel{\bruch{y+1}{36y}} [/mm]


das sieht für mich etwas komisch aus...

Bezug
                        
Bezug
Lagrange Mult. Dreieck-Ellipse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:53 So 18.10.2009
Autor: Al-Chwarizmi


> Hallo!
>  
> also ich komme auf:
>  
> [mm]\phi_x[/mm] = [mm]2x\lambda[/mm] +y + 1  [ok]
> [mm]\phi_y[/mm] = [mm]18y\lambda[/mm] + x  [ok]
>  [mm]\phi_\lambda[/mm] = [mm]x^2[/mm] + [mm]9y^2[/mm] - 9  [ok]
>  
>
> aus [mm]\phi_y[/mm] ergibt sich x = -18 [mm]\lambda[/mm] y  [ok]
>  
> in [mm]\phi_x[/mm] eingesetzt ergibt das:
>  
> [mm]2(-18\lambda[/mm] y) [mm]\lambda[/mm] + y + 1 = 0
>  -36 [mm]\lambda^2[/mm] y + y + 1 = 0
>  36 [mm]\lambda^2[/mm] y = y + 1
>  [mm]\lambda[/mm] = [mm]\wurzel{\bruch{y+1}{36y}}[/mm]
>  
>
> das sieht für mich etwas komisch aus...


alles richtig ! nur weitermachen ...

vor allem musst du die 3. Gleichung noch benützen


LG     Al-Chw.


Bezug
                                
Bezug
Lagrange Mult. Dreieck-Ellipse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:02 So 18.10.2009
Autor: babapapa

Hallo!

Also ich bekomme jetzt folgendes heraus:

y = [mm] \bruch{-1}{1-36\lambda^2} [/mm]
x = [mm] \bruch{-36\lambda}{72 \lambda^2 - 2} [/mm]

das in [mm] x^2 [/mm] + [mm] 9y^2 [/mm] -9 = 0 einsetzen ergibt:

[mm] \lambda_1 [/mm] = 0
[mm] \lambda_2 [/mm] = [mm] -\wurzel{3}/6 [/mm]
[mm] \lambda_3 [/mm] = [mm] \wurzel{3}/6 [/mm]

für [mm] \lambda [/mm] = 0
ergibt sich y = -1 und x = 0. für diese Werte gilt auch die Nebenbedingung


ich hoffe ich hab mich nicht verrechnet.

Bezug
                                        
Bezug
Lagrange Mult. Dreieck-Ellipse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:22 So 18.10.2009
Autor: Al-Chwarizmi


> Hallo!
>  
> Also ich bekomme jetzt folgendes heraus:
>  
> y = [mm]\bruch{-1}{1-36\lambda^2}[/mm]
>  x = [mm]\bruch{-36\lambda}{72 \lambda^2 - 2}[/mm]
>  
> das in [mm]x^2[/mm] + [mm]9y^2[/mm] -9 = 0 einsetzen ergibt:
>  
> [mm]\lambda_1[/mm] = 0
>  [mm]\lambda_2[/mm] = [mm]-\wurzel{3}/6[/mm]
>  [mm]\lambda_3[/mm] = [mm]\wurzel{3}/6[/mm]
>  
> für [mm]\lambda[/mm] = 0
>  ergibt sich y = -1 und x = 0. für diese Werte gilt auch
> die Nebenbedingung
>
>
> ich hoffe ich hab mich nicht verrechnet.

Du solltest dich aber auch um die anderen Lösungen und
die entsprechenden x- und y-Werte kümmern und dann
prüfen, welche Dreiecke maximalen Flächeninhalt haben.


LG


Bezug
        
Bezug
Lagrange Mult. Dreieck-Ellipse: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 20.10.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de