www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Lagrange Multiplikator
Lagrange Multiplikator < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange Multiplikator: extrema
Status: (Frage) beantwortet Status 
Datum: 21:15 Fr 07.09.2012
Autor: Kevin22

Aufgabe
Hallo ich habe eine frage zu einer Aufgabe :

Gegeben sei die Funktionen:

f(x,y) = xy

g(x,y) = [mm] x^2 +4y^2 [/mm] -2

Bestimmen Sie die Extrema von f unter der Nebenbedingung g(x, y) = 0.

y+ lamda*2x = 0

x+ lambda *8y= 0

[mm] x^2 [/mm] + [mm] 4y^2 [/mm] -2 = 0

y = -2xlambda

x+ 8lambda * (-2xlambda) = 0

x - [mm] 16xlambda^2 [/mm] = 0

x*( [mm] 1-16lambda^2 [/mm] ) = 0

x* ( 1- [mm] 16lambda^2 [/mm] ) = 0

lambda1 = 1/4

lambda 2 = -1/4

y 1 = -1/2
y2 = 1/2

Wie gehe ich jetzt weiter vor?

Ich habe die frage in keinem forum gestellt.

        
Bezug
Lagrange Multiplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:01 Sa 08.09.2012
Autor: Kevin22

Kann mir jemand sagen wie ich weiter vorgehen soll bitte.

Bezug
                
Bezug
Lagrange Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 02:41 Sa 08.09.2012
Autor: Teufel

Hi!

Alles richtig. Nun setze deine Ergebnisse alle z.B.  in deine 2. Gleichung ein, [mm] $x+8\lambda [/mm] y=0$.

Bezug
                        
Bezug
Lagrange Multiplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:08 Sa 08.09.2012
Autor: Kevin22

Das problem ist in meiner musterlösung komme die noch auf die werte x3= -1 x4= -1

y3  = -1/2

y4 = 1/2

Wie kommen die auf diese werte ?

Warum gibt es 4 werte ?

Bezug
                                
Bezug
Lagrange Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Sa 08.09.2012
Autor: Teufel

Du musst ja alle deine Ergebnisse getrennt einsetzen. Fangen wir mal mit [mm] \lambda_1=\frac{1}{4} [/mm] an. Dann erhältst du [mm] $y_{1,1}=\frac{1}{2}$ [/mm] und [mm] $y_{1,2}=-\frac{1}{2}$. [/mm] Diese y-Werte gehören jetzt erst mal nur zu dem [mm] \lambda_1. [/mm] Daraus erhältst du dann mit $ [mm] x+8\lambda [/mm] y=0 $ für [mm] \lambda_1 [/mm] und [mm] y_{1,1} [/mm] dann [mm] $x_{1,1}=-1$ [/mm] und für [mm] \lambda_1 [/mm] und [mm] y_{1,2} [/mm] dann [mm] $x_{1,2}=1$. [/mm]

Du musst also immer gucken, welche Lösungen nun zusammen gehören.

Bezug
                                        
Bezug
Lagrange Multiplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:24 Sa 08.09.2012
Autor: Kevin22

Aber wie kriege ich die zwei weiteren Werte raus?

Bezug
                                                
Bezug
Lagrange Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Sa 08.09.2012
Autor: MathePower

Hallo Kevin22,

> Aber wie kriege ich die zwei weiteren Werte raus?


Nun, es gibt noch einen Wert, für den die zugehörigen Lösungen zu ermitteln sind:

[mm]\lambda_{2}=-\bruch{1}{4}[/mm]

Daraus bestimmst Du zunächst die Beziehung zwischen y und x.
Diese Beziehung setzt Du dann in die Nebenbedingung ein,
und ermittelst so die x- bzw y-Werte.


Gruss
MathePower

Bezug
                                                        
Bezug
Lagrange Multiplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Sa 08.09.2012
Autor: Kevin22

Wo setze ich denn lambda wert aber nun genau ein?

Bezug
                                                                
Bezug
Lagrange Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Sa 08.09.2012
Autor: M.Rex


> Wo setze ich denn lambda wert aber nun genau ein?

Im Zweifel in eine Gleichung, in der [mm] \lambda [/mm] auftaucht.

Mal im Wrnst. Versuche doch solche wirklich simplen Dinge mal selber herauszufinden, sonst wird das in deiner Klausur gelinde gesagt desatrös. Der Weg ist dir doch anhand eines Wertes vorgerechnet worden, führe diesen mit anderen Zahlen durch. Das ist eine Anforderung, die man im Studium - und als naturwissenschaftlicher Student bezeichnest du dich ja - definitiv können muss. (Obwohl, eigentlich sollte man das schon in der Grundschule können)

Marius


Bezug
                                                                        
Bezug
Lagrange Multiplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Sa 08.09.2012
Autor: Kevin22

Ok ich habe:

y= -2xlambda   hier habe ich dann lambda 1 = 1/4 eingesetzt:

Also:

kommt raus: 1/2 x raus.

Was mache ich mit dem wert?


Bezug
                                                                                
Bezug
Lagrange Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Sa 08.09.2012
Autor: MathePower

Hallo Kevin22,

> Ok ich habe:
>  
> y= -2xlambda   hier habe ich dann lambda 1 = 1/4
> eingesetzt:
>  
> Also:
>  
> kommt raus: 1/2 x raus.
>  
> Was mache ich mit dem wert?
>  


In die Nebenbedingung einsetzen.


Gruss
MathePower

Bezug
                                                                                        
Bezug
Lagrange Multiplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Sa 08.09.2012
Autor: Kevin22


> Hallo Kevin22,
>  
> > Ok ich habe:
>  >  
> > y= -2xlambda   hier habe ich dann lambda 1 = 1/4
> > eingesetzt:
>  >  
> > Also:
>  >  
> > kommt raus: 1/2 x raus.
>  >  
> > Was mache ich mit dem wert?
>  >  
>
>
> In die Nebenbedingung einsetzen.
>  
>
> Gruss
>  MathePower

Oh danke leute jetzt habe ich endlich die richtigen werte raus.

Wie muss ich denn jetzt weiter vorgehen?


Bezug
                                                                                                
Bezug
Lagrange Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 01:12 So 09.09.2012
Autor: leduart

Hallo
Nachdenken, was hast du mit den 4 punkten, was brauchst du noch. Dann nachsehen, wie man das gesuchte findet. Dazu dient die Vorlesung, das Skript, ein Buch.
Sag mal verwendest du für deine Aufgaben nur das forum?
Gruss leduart

Bezug
                                                                                                        
Bezug
Lagrange Multiplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:21 So 09.09.2012
Autor: Kevin22

Muss ich die werte in die 2 ableitung einsetzen?

Bezug
                                                                                                                
Bezug
Lagrange Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 01:27 So 09.09.2012
Autor: leduart

Hallo
was  sagt dein skript dazu, und was nennst du die 2 te Ableitung?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de