www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Lagrangeschen Restglied
Lagrangeschen Restglied < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrangeschen Restglied: Komplexes Polynom
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:44 Mi 04.05.2011
Autor: adam18

Aufgabe
[mm] F(t)=\summe_{v=-n}^{n}a_{v}e^{ivt} [/mm]

Zeige ferner mit Hilfe der Lagrangeschen Restgliedformel (angewandt auf cos t, sin t), dass es ein komplexes Polynom P(t) = [mm] \summe_{i=0}^{m}b_{i}i^{i} [/mm] gibt, mit [mm] b_{i}\in \IC, [/mm] so dass für alle t [mm] \in [/mm] [0; [mm] 2\pi] [/mm] gilt: [mm] |F(t)-P(t)|\le \varepsilon/2 [/mm]

Hallo Leute,
ich brauche dringend eure tipps,

so ist [mm] F(t)=\summe_{v=-n}^{n}(cos(vt) [/mm] - [mm] i\*sin(vt)) [/mm]
und
Rn(x)= |F(t) - P(t)| ist das richtig?
hat jemand eine Idee?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Lagrangeschen Restglied: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Mi 04.05.2011
Autor: leduart

Hallo
in p(t) hast du dich wohl vertippt.
was spricht dagegen einfach das zu tun, was da steht? reine für cos und sin mit restglied einsetzen?
gruss leduart


Bezug
                
Bezug
Lagrangeschen Restglied: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:27 Mi 04.05.2011
Autor: adam18

Ja ich habe mich vertippt
[mm] P(t)=\summe_{v=-n}^{n}(cos(vt) [/mm] + [mm] i\*sin(vt)) [/mm]

die Frage:
wie kann ich mit Hilfe der Lagrangeschen Restglied zeigen, dass [mm] |F(t)-P(t)|\le \varepsilon/2 [/mm]



Bezug
                        
Bezug
Lagrangeschen Restglied: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Mi 04.05.2011
Autor: leduart

Hallo
du hast doch genaue tips, was du machen sollst, reihen hinschreiben, Restglied abschätzen!
Gruss leduart


Bezug
                                
Bezug
Lagrangeschen Restglied: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:43 Mi 04.05.2011
Autor: adam18

hallo leduart,

du meint R(t)=|F(t)-P(t)|  
    
             = [mm] |\summe_{v=-n}^{n}e^{ivt} [/mm] - [mm] \summe_{i=0}^{m}b_{i}t^{i}| [/mm]

aber was ist der zusammenhang zwischen die Summen und R(t), und was bedeutet das Restglied auf cos und sin zu anwenden?


Bezug
                                        
Bezug
Lagrangeschen Restglied: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:23 Fr 06.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de