www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Landau-Symbol
Landau-Symbol < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Landau-Symbol: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Fr 28.01.2011
Autor: simplify

Aufgabe
Man benutze die Notation O(g(x)) für [mm] x\to\infty [/mm]
a) Schreiben Sie entsprechend die folgenden Aüsdrücke in asymptotischer Notation für [mm] x\to\infty: [/mm]
i) [mm] 5x^{3}+x^{2}-1 [/mm]
[mm] ii)e^{-x}+x^{2} [/mm]
iii)x |sin(x)|

b) Vereinfachen Sie die folgenden Ausdrücke:
i) [mm] O(x^{2})+O(x^{3}) [/mm]
ii) [mm] O(x^{2})-O(x^{2}) [/mm]
iii) [mm] O(x^{2})-O(x^{3}) [/mm]
iv)....

Hallo,
ich hab ein riesiges Problem. Ich schreibe demnächst ein Klausur in Computerorientierten Mathematik und versteh einfach patu nicht die O-Notation.
Ich schaue mir die Definition an und weiß dadurch halt,dass es ein c >0 geben muss s.d. gilt : f(x) [mm] \le [/mm] cg(x) [mm] \forall [/mm] x [mm] \ge x_{0}. [/mm]
Ich weiß auch,dass [mm] \limes_{x\rightarrow\infty} \bruch{f(x)}{g(x)} [/mm] = c , aber ich komm damit nicht weiter. Kann mir jemand helfen, bzw. paar helfende Worte zukommen lassen.

        
Bezug
Landau-Symbol: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Fr 28.01.2011
Autor: Theoretix

Hi simplify,

ja auch wir wurden letztens damit konfrontiert, was erstmal zu großer Verwirrung geführt hat=)

Was ich bisher verstanden habe:

Per Definition gilt ja: Seien f und g zwei Funktionen definiert nahe [mm] x=x_{0}. [/mm] Dann sagt man f(x)= O(g(x)), [mm] x\to x_{0} \gdw \exists [/mm] C>0, sodass in einer Umgebung [mm] x=x_{0} [/mm] gilt: [mm] |f(x)|\le [/mm] C |g(x)|

Dann interpretieren wir diese Aussage mal: Durch das „O“ Symbol beschreibt man doch jetzt das Verhalten einer Funktion (hier g) im Vergleich zu einer anderen Funktion f. Genauer gesagt das asymptotische Verhalten bei der Näherung an den Wert [mm] x_{0}, [/mm] oder aber auch für einen „unendlichen Grenzwert“, d.h. man verwendet diese Notation auch für [mm] x\to \infty. [/mm] Was fängt man damit an? Nun, wie ich das bisher verstanden habe, findet diese Notation häufig Verwendung bei der Fehlerabschätzung für den Fehlerterm einer Approximation (konkretes Beispiel: Reihendarstellungen). So lassen sich Restterme dadurch um eine bestimmte Größenordnung abschätzen. Hast du z.B. irgendeine Approximation einer Funktion durch eine Reihe und möchtest ein Glied mithilfe von „O“ abschätzen und hast [mm] ...+...+O(x^5), [/mm] dann sagst du damit aus, dass der Absolutbetrag deines Approcimationsfehlers  kleiner ist als eine Konstante mal [mm] x^5..(ich [/mm] hoffe die Mathematiker hier, drehen mir dafür nicht den Hals um=))
Für klein „o“ mit der Notation f(x)=o(g(x)) sagt man, wenn f(x)=O(g(x)) [mm] x\to x_{0}gilt [/mm] und f in [mm] x_{0}zudem [/mm] eine „stärkere Nullstelle hat“, also:
[mm] \limes_{n\rightarrow\x_{0}}\bruch{f(x)}{g(x)}=0. [/mm]

Ist wahrscheinlich nicht sehr mathematisch formuliert, wobei ich sagen muss, dass man sich an deren Definitionen auch manchmal aufhängen kann. Hoffe, es hilft dir ein wenig.

Gruß

Bezug
                
Bezug
Landau-Symbol: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:25 Mo 31.01.2011
Autor: simplify

ja,vielen dank erstmal.ich werde mal schauen,ob ich meine aufgaben jetzt gelöst kriege.

Bezug
        
Bezug
Landau-Symbol: Antwort
Status: (Antwort) fertig Status 
Datum: 08:18 Mi 09.02.2011
Autor: fatha

Da ich eine ähnliche Klausur schreibe, würde ich gerne meine Ergebnisse schreiben um zu sehen ob ich es verstehe.

a)
i) [mm]O(x^3)[/mm], da [mm] 5x^3 [/mm] der größte Wert ist und bei [mm]x^3[/mm] als Funktion g 5 die Konstante ist.
ii) [mm]O(x^2)[/mm], da [mm]e^-x[/mm] gegen 0 konvergiert und deshalb vernachlässigbar ist.
iii) [mm]O(x)[/mm], [mm]|sin x|[/mm] ist maximal 1 und kann deswegen vernachlässigt werden

b)
i) [mm]O(x^3)[/mm], da die Funktionsklasse [mm]O(x^2)[/mm] bei [mm]O(x^3)[/mm] vernachlässigbar ist.
ii) Hier bin ich mir nicht sicher. Ich nehme an, dass das Ergebnis [mm]O(1)[/mm] ist.
iii) Das weiß ich nicht, ich nehme an nicht definiert. Kann das jemand genauer erklären?

Liebe Grüße fatha

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de