www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Landau-Symbole
Landau-Symbole < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Landau-Symbole: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 So 15.05.2005
Autor: ThomasK

Hallo.

Ich habe hier eine Aufgabe:

(1 + [mm] x)^{n} [/mm] = 1 + nx + o(x), wenn x [mm] \to [/mm] 0.

Unsere Definition lautet:
A = { [mm] a_{n} [/mm] }, B = { [mm] b_{n} [/mm] }.
Folge A ist "Klein-o" von B, wenn { [mm] a_{n}/ b_{n} [/mm] } eine
Nullfolge ist

Also heißt das doch [mm] a_{n} [/mm] = (1 + [mm] x)^{n} [/mm]  und
[mm] b_{n} [/mm] = 1 + nx + o(x),
es heißt doch aber [mm] a_{n} \in [/mm] o( [mm] b_{n} [/mm] ), wäre [mm] b_{n} [/mm] = x????

[mm] \limes_{x\rightarrow 0} a_{n}/ b_{n} [/mm] =
[mm] \limes_{x\rightarrow 0} [/mm]  (1 + [mm] x)^{n}/ [/mm] (1 + nx + o(x)) ,
wenn x gegen null geht, heißt das doch 1/1, also ist der lim [mm] a_{n} [/mm] = 1, also ist es keine nullfolge und somit stimmt das nicht,bzw. stimmt das nicht was ich da gerechnet habe...

        
Bezug
Landau-Symbole: Re: Landau-Symbole
Status: (Antwort) fertig Status 
Datum: 22:31 So 15.05.2005
Autor: logarithmus

Hallo ThomasK!

Zunächst etwas zum Landau Symbol &omicron - Klein-oh:
Seien f,g: D [mm] \to \IR [/mm] zwei auf der Teilmenge D [mm] \subset \IR [/mm] definierte Funktionen und [mm] x_0 [/mm] ein Berührpunkt von D. Dann schreibt man f(x) = &omicron(g(x)) für x [mm] \to x_0, [/mm] x [mm] \in [/mm] D, falls zu jedem [mm] \epsilon [/mm] > 0 ein [mm] \delta [/mm] > 0 existiert, so dass |f(x)| [mm] \le \epsilon [/mm] |g(x)|   für alle x [mm] \in [/mm] D mit |x - [mm] x_0| [/mm] < [mm] \delta. [/mm] Falls g(x) [mm] \ne [/mm] 0 in D, ist dies wieder gleichbedeutend mit [mm] \lim_{D\ \ni \ x \to x_0}\bruch{f(x)}{g(x)} [/mm] = 0.

Zur Aufgabe:
Du hast [mm] a_n [/mm] = [mm] (1+x)^n [/mm] und [mm] b_n [/mm] = 1+nx+&omicron(x) angenommen.
In diesem Fall gilt: [mm] a_n(x) [/mm] = [mm] b_n(x) [/mm] für x [mm] \to [/mm] 0 (nach Aufgabenstellung).
Setze jedoch [mm] a_n [/mm] = [mm] (1+x)^n [/mm] -(1+nx), [mm] b_n [/mm] = x, und vergleiche mit der Aufgabenstellung, so siehst du, dass [mm] a_n [/mm] = [mm] o(b_n) [/mm] für x [mm] \to [/mm] 0.
Dann gilt:
[mm] \lim_{x \ \to \ 0}a_n(x) [/mm] = [mm] \lim_{x \ \to \ 0}((1+x)^n [/mm] -(1+nx))
        = [mm] \lim_{x \ \to \ 0}(( \sum_{k=0}^{n}{n \choose k}1^{n-k}\cdot x^k) [/mm] - (1+nx))
        = [mm] \lim_{x \ \to \ 0}( [/mm] 1+nx+ {n [mm] \\ 2}x^2+...+{n \choose n-2}x^{n-2}+nx^{n-1}+x^n)-(1+nx)) [/mm]
        = [mm] \lim_{x \ \to \ 0}\sum_{k=2}^{n}{n \choose k}x^{n-k} [/mm] = 0
[mm] \Rightarrow \lim_{x \ \to \ 0}a_n(n) [/mm] = 0.
Also ist [mm] a_n [/mm] tatsächlich eine Nullfolge für x [mm] \to [/mm] o.

Ich hoffe deine Frage ist beantwortet.
gruss
logarithmus

Bezug
                
Bezug
Landau-Symbole: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:48 Mo 16.05.2005
Autor: ThomasK

Eine Frage hab ich da noch.

man muss doch den  [mm] \limes_{n\rightarrow 0}a_{n}/b_{n} [/mm] berechnen, dann würde man [mm] \limes_{n\rightarrow 0} [/mm] 0/x bekommen, also [mm] \limes_{n\rightarrow 0} [/mm] 0/0 und das ist ja nicht definiert....

Warum hast du aber nur den Limes von [mm] a_{n} [/mm] berechnet?

Bezug
        
Bezug
Landau-Symbole: Re: Fortsetzung+Korrektur
Status: (Antwort) fertig Status 
Datum: 14:07 Mo 16.05.2005
Autor: logarithmus

Hallo.

Mein Beitrag von vorhin, erweitert und Schreibfehler korrigiert:
Du hast geschrieben:
"... wenn x gegen null geht, heißt das doch 1/1, also ist der lim $ [mm] a_{n} [/mm] $ = 1, also ist es keine nullfolge und somit stimmt das nicht,bzw. stimmt das nicht was ich da gerechnet habe... "
Setze [mm] a_n [/mm] = [mm] (1+x)^n [/mm] -(1+nx), [mm] b_n [/mm] = x, und vergleiche mit der Aufgabenstellung, so siehst du, dass [mm] a_n [/mm] = [mm] o(b_n) [/mm] für x [mm] \to [/mm] 0.
Dann gilt:
[mm] \lim_{x \ \to \ 0}a_n(x) [/mm] = [mm] \lim_{x \ \to \ 0}((1+x)^n [/mm] -(1+nx))
        = [mm] \lim_{x \ \to \ 0}(( \sum_{k=0}^{n}{n \choose k}1^{n-k}\cdot x^k) [/mm] - (1+nx))
        = [mm] \lim_{x \ \to \ 0}( [/mm] 1+nx+\ [mm] {n\choose 2}x^2+...+{n \choose n-2}x^{n-2}+nx^{n-1}+x^n)-(1+nx)) [/mm]
        = [mm] \lim_{x \ \to \ 0}\sum_{k=2}^{n}{n \choose k}x^{n-k} [/mm] = 0
[mm] \Rightarrow \lim_{x \ \to \ 0}a_n(x) [/mm] = 0.
Also ist [mm] a_n [/mm] tatsächlich eine Nullfolge für x [mm] \to [/mm] o.
Ich habe diesen Limes berechnet, um zu zeigen, dass [mm] a_n(x) [/mm] eine Nullfolge für x [mm] \to [/mm] 0 ist.


"... man muss doch den  $ [mm] \limes_{n\rightarrow 0}a_{n}/b_{n} [/mm] $ berechnen, dann würde man $ [mm] \limes_{n\rightarrow 0} [/mm] $ 0/x bekommen, also $ [mm] \limes_{n\rightarrow 0} [/mm] $ 0/0 und das ist ja nicht definiert.... "
Jetzt rechnen wir [mm] \lim_{x \ \to \ 0}\bruch{a_n}{b_n}: [/mm]
[mm] \lim_{x \ \to \ 0}\bruch{a_n}{b_n} [/mm] = [mm] \lim_{x \ \to \ 0}\bruch{\sum_{k=2}^{n} ( {n \choose k} ( x^(n-k) ) }{x} [/mm]
       = [mm] \lim_{x \ \to \ 0}\bruch{{n\choose 2}x^2+...+{n \choose n-2}(x^(n-2))+n(x^(n-1))+x^n}{x} [/mm] (Wir können kürzen, bevor wir den Grenübergang betrachten)
       = [mm] \lim_{x \ \to \ 0}({n\choose 2}x^1+...+{n \choose n-2}(x^{n-3})+n(x^{n-2})+(1x^{n-1})) [/mm] (definiert, da Nenner [mm] \ne [/mm] 0)
       = 0.

Gruss,
logarithmus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de