Laplace-Gleichung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Gegeben sei u: [mm] \IR^{n}\setminus [/mm] {0} [mm] \to \IR, [/mm] n > 2 mit
u(x) = [mm] ||x||^{\alpha} [/mm] , ||x|| = [mm] \wurzel{\summe_{i=1}^{n}x_{i}^{2}}.
[/mm]
Bestimmen Sie [mm] \alpha \in \IR [/mm] so, dass u eine Lösung der Laplace-Gleichung
[mm] \Delta [/mm] u = [mm] \summe_{i=1}^{n} u_{x_{i}x_{i}} [/mm] = 0 in [mm] \IR^{n}\setminus [/mm] {0} ist. |
Schönen guten Abend,
ich verzweifel leider schon etwas an der Aufgabenstellung, da wir die Laplace-Gleichung in der VL noch nicht behandelt haben.
Sind mit [mm] u_{x_{i}x_{i}} [/mm] die zweifachen part. Ableitungen nach [mm] x_{i} [/mm] und [mm] x_{i} [/mm] gemeint?
Lieben Dank und viele Grüße
Athanasius
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 06:27 Mo 28.04.2014 | Autor: | fred97 |
> Gegeben sei u: [mm]\IR^{n}\setminus[/mm] {0} [mm]\to \IR,[/mm] n > 2 mit
> u(x) = [mm]||x||^{\alpha}[/mm] , ||x|| =
> [mm]\wurzel{\summe_{i=1}^{n}x_{i}^{2}}.[/mm]
>
> Bestimmen Sie [mm]\alpha \in \IR[/mm] so, dass u eine Lösung der
> Laplace-Gleichung
> [mm]\Delta[/mm] u = [mm]\summe_{i=1}^{n} u_{x_{i}x_{i}}[/mm] = 0 in
> [mm]\IR^{n}\setminus[/mm] {0} ist.
> Schönen guten Abend,
>
> ich verzweifel leider schon etwas an der Aufgabenstellung,
> da wir die Laplace-Gleichung in der VL noch nicht behandelt
> haben.
> Sind mit [mm]u_{x_{i}x_{i}}[/mm] die zweifachen part. Ableitungen
> nach [mm]x_{i}[/mm] und [mm]x_{i}[/mm] gemeint?
Ja
FRED
>
> Lieben Dank und viele Grüße
> Athanasius
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
|
|
|
|