www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Laplace-Operator
Laplace-Operator < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Operator: Harmonizität
Status: (Frage) beantwortet Status 
Datum: 10:15 Sa 16.11.2013
Autor: mikexx

Aufgabe
Morgen,

es soll nachgerechnet werden, dass die Funktion

[mm] $f(x,\xi)=\frac{1-\lVert x\rVert^2}{\Vert x-\xi\rVert^n}, x\in B_1(0)\subset\mathbb{R}^n,\xi\in S_1(0)$ [/mm]

aufgefasst als Funktion in $x$ in [mm] $B_1(0)\setminus\left\{0\right\}$ [/mm]

eine harmonische Funktion ist.


Das ist natürlich eine Menge Rechenarbeit.



Ich muss also bestätigen, dass

[mm] $\Delta [/mm] f=0$.

Dazu habe ich mir jetzt mal irgendein [mm] $i\in\left\{1,\dots,n\right\}$ [/mm] genommen und versucht, die zweite partielle Ableitung nach [mm] $x_i$ [/mm] zu berechnen.

Ich weiß nicht genau, ob ich hier die ganze Rechnung hinschreiben sollte, weil sie eher länglich ist, aber andererseits müssen Sie meine Rechnung ja irgendwie auch nachvollziehen können, um mir zu sagen, wo ich falsch oder richtig liege.

Ich habe also zunächst die erste partielle Ableitung mit der Quotientenregel ausgerechnet und ich erhalte

[mm] $f_{x_i}=\frac{-2x_i\lVert x-\xi\rVert^n-(1-\lVert x\rVert^2)\frac{n}{2}\lVert x-\xi\rVert^{n-2}(2x_i-2\xi_i)}{\lVert x-\xi\rVert^{2n}}$ [/mm]

Dabei habe ich unter Anderem auch die Kettenregel verwendet, z.B. um [mm] $\frac{\partial}{\partial x_i}(\lVert x-\xi\rVert^n)$ [/mm] zu berechnen. Zur Kontrolle:

[mm] $\frac{\partial}{\partial x_i}(\lVert x-\xi\rVert^n)=\frac{1}{2}n\lVert x-\xi\rVert^{n-2}(2x_i-2\xi_i)$ [/mm]



Vielleicht erstmal nur bis zu dieser Stelle.
Hätte jemand Lust und Muße, mir zu sagen, ob ich bis hierhin korrekt gerechnet habe?


Schöne Grüße!

mikexx


        
Bezug
Laplace-Operator: Zusatzfrage
Status: (Frage) beantwortet Status 
Datum: 13:11 Sa 16.11.2013
Autor: mikexx

Ich frage mal etwas spezieller.

Was ist die partielle Ableitung von [mm] $\lVert x-\xi\rVert^n$ [/mm] nach [mm] $x_i$? [/mm]

Ich habe das, wie gesagt, mit der Kettenregel gemacht.

Zuerst habe ich

[mm] $\lVert x-\xi\rVert^n$ [/mm] geschrieben als [mm] $(\sum_{i=1}^{n}(x_i-\xi_i)^2)^{n/2}$. [/mm]

Als innere Funktionen habe ich dann [mm] $u:=\lVert x-\xi\rVert^2=\sum_{i=1}^{n}(x_i-\xi_i)^2$ [/mm] gesetzt und hiervon ist die partielle Ableitung nach [mm] $x_i$ [/mm] doch [mm] $2x_i-2\xi_i$, [/mm] oder?

Die äußere Funktion [mm] $z:=u^{n/2}$ [/mm] ist, nach u abgeleitet: [mm] $\frac{n}{2}u^{\frac{n}{2}-1}$ [/mm] und nach Resubstituieren ist das

[mm] $\frac{n}{2}\lVert x-\xi\rVert^{n-2}$. [/mm]


Insgesamt komme ich also auf die partielle Ableitung

[mm] $\frac{n}{2}\lVert x-\xi\rVert^{n-2}(2x_i-2\xi_i)$. [/mm]


Stimmt das?

Bezug
        
Bezug
Laplace-Operator: Antwort
Status: (Antwort) fertig Status 
Datum: 10:54 Mo 18.11.2013
Autor: Gonozal_IX

Hallo mikex,

tut mir Leid, dass noch niemand vorher darauf geantwortet hat, obwohl deine Frage eigentlich sehr vorbildlich gestellt war.

Dann wollen wir mal :-)


> [mm]f_{x_i}=\frac{-2x_i\lVert x-\xi\rVert^n-(1-\lVert x\rVert^2)\frac{n}{2}\lVert x-\xi\rVert^{n-2}(2x_i-2\xi_i)}{\lVert x-\xi\rVert^{2n}}[/mm]

$ = [mm] \frac{-2x_i\lVert x-\xi\rVert^n- n (1-\lVert x\rVert^2)\lVert x-\xi\rVert^{n-2}(x_i-\xi_i)}{\lVert x-\xi\rVert^{2n}}$ [/mm]

Und als Tipp: Nun reicht es, den Zähler zu betrachten!
Klammere dann [mm] $\lVert x-\xi\rVert^{n-2}$ [/mm] aus und fasse geeignet zusammen.

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de