www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Laplace-Transformation
Laplace-Transformation < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:43 Sa 29.04.2006
Autor: Maiko

Hallo!

Ich habe folgendes Problem. Leider wusste ich nicht genau, ob es sich hierbei um ein Problem der Analysis handelt. Hoffe, dass ich hier trotzdem richtig bin.

Folgende Formel habe ich im Bildbereich gegeben:

G(s) = [mm] \frac{K}{s*(1+T*s)} [/mm]

Nun möchte ich diese in den Zeitbereich umwandeln. Glücklicherweise steht dazu eine fertige Gleichung in meinem Script. Diese lautet:

h(t) = [mm] K*(1-e^{-1/T * t}) [/mm]

Nun habe ich eine zweite Gleichung im Bildbereich, die sich von obiger nur minimal unterscheidet:

G(s) = [mm] \frac{K}{s^2*(1+T*s)} [/mm]

Diese möchte ich ebenfalls in den Zeitbereich umwandeln. Das Ergebnis lautet:

h(t) = [mm] K*T*(1/T*t-(1-e^{-1/T*t})) [/mm]

Könnte mir jemand das Vorgehen zur Lösung beider Umwandlungen erklären? Ich wäre für Hilfe wirklich sehr dankbar, da ich nicht weiß, wie ich vorzugehen habe.
Danke!

        
Bezug
Laplace-Transformation: Tipps und Integral
Status: (Antwort) fertig Status 
Datum: 18:05 Sa 29.04.2006
Autor: Infinit

Hallo Maiko,
der Zusammenhang zwischen der Laplace-Transformierten und der Gleichung im Zeitbereich ergibt sich direkt durch die Bestimmungsgleichung zur inversen Laplace-Transformation. Hier führt man eine Integration auf einer geschlossenen Kurve im Komplexen durch und die Lösung solcher Integrale geschieht elegant durch den Residuensatz, dessen Wert durch die Polstellen der Laplace-Tansformation bestimmt wird. Man würde also eine Partialbruchzerlegung durchführen, die Pole sind dadurch bekannt und man kann das Residuum jeder Teilfunktion bestimmen. Einfacher ist es da wirklich, in den Tabellen nachzuschauen.
Damit komme ich auch gleich zu deiner zweiten Frage,  bei der Dir ja bereits auffiel, dass sich beide Transormeirte nur um den Faktor s im Nenner voneinander unterscheiden. Das ist auch gut so, denn der Integralsatz der Laplacetransformation sagt aus, dass die Integration über eine Zeitfunktion sich im Laplace-Bereich als Multiplikation der Transformierten mit dem Faktor $ 1/s $ widerspiegelt. Die gesuchte Zeitfunktion ist also die Integrierte der ersten Zeitfunktion.
Viele Grüße,
Infinit

Bezug
                
Bezug
Laplace-Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Sa 29.04.2006
Autor: Maiko


> Der Zusammenhang zwischen der Laplace-Transformierten und
> der Gleichung im Zeitbereich ergibt sich direkt durch die
> Bestimmungsgleichung zur inversen Laplace-Transformation.
> Hier führt man eine Integration auf einer geschlossenen
> Kurve im Komplexen durch und die Lösung solcher Integrale
> geschieht elegant durch den Residuensatz, dessen Wert durch
> die Polstellen der Laplace-Tansformation bestimmt wird. Man
> würde also eine Partialbruchzerlegung durchführen, die Pole
> sind dadurch bekannt und man kann das Residuum jeder
> Teilfunktion bestimmen.

Ok, soweit ist mir das klar. Meiner Meinung nach ist das meist aber der umständlichere Weg.

> Einfacher ist es da wirklich, in
> den Tabellen nachzuschauen.

Genau. Ich denke, dass man auf diese Weise bei den meisten Aufgaben am schnellsten zur Lösung gelangen kann.

>  Damit komme ich auch gleich zu deiner zweiten Frage,  bei
> der Dir ja bereits auffiel, dass sich beide Transormeirte
> nur um den Faktor s im Nenner voneinander unterscheiden.
> Das ist auch gut so, denn der Integralsatz der
> Laplacetransformation sagt aus, dass die Integration über
> eine Zeitfunktion sich im Laplace-Bereich als
> Multiplikation der Transformierten mit dem Faktor [mm]1/s[/mm]
> widerspiegelt. Die gesuchte Zeitfunktion ist also die
> Integrierte der ersten Zeitfunktion.

Danke für den Hinweis.

Nun würde mich aber dennoch interessieren, wie du nun schrittweise bei der Lösung der Aufgabe vorgehen würdest. Nehmen wir an, du hast die Funktion im Bildbereich gegeben und möchtest das ganze nicht über Integrieren mit Hilfe des Residuensatzes lösen.
Wie gehst du nun vor? Welche Korespondenzen verwendest du?

Da ich das noch nicht ausführlich gemacht habe, fällt es mir sehr schwer beim ersten Mal gleich auf die richtige Lösung zu kommen. Könntest du mir ein paar konkrete Schritte zur Lösung nennen? Wie gehe ich bei dieser Aufgabe Schritt für Schritt vor? Kannst du mir da helfen?
Ich wäre dir sehr dankbar.

Viele Grüße

Bezug
                        
Bezug
Laplace-Transformation: Im Detail
Status: (Antwort) fertig Status 
Datum: 18:58 Sa 29.04.2006
Autor: Infinit

Hallo Maiko,
jetzt habe ich mal meinen Bronstein von 1979 rausgeholt und da finde ich im Kapitel über die Laplace-Transformation folgenden Zusammenhang:
Zu [mm] $\bruch{1}{s\cdot (s+a)} [/mm] $ gehört im Zeitbereich die Funktion $ [mm] \bruch{1}{a} \cdot (1-e^{-at}) [/mm] $. Man müsste also nun Deine Funktion
$$ [mm] \bruch{K}{s \cdot (1+Ts)} [/mm] $$ in die oben angegebene Funktion umformen. Klammert man K aus und dividiert den Bruch im Zähler und Nenner durch T, so kommt man auf die Form
$$ [mm] \bruch{K}{T} \cdot (\bruch{1}{s \cdot (s+\bruch{1}{T})}). [/mm] $$ Ein Vergleich mit der Korrespondenz ergibt, dass hier $$ a = [mm] \bruch{1}{T} [/mm] $$ gilt, und das führt direkt zu Deiner Gleichung.
Viele Grüße,
Infinit

Bezug
                                
Bezug
Laplace-Transformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:55 Do 04.05.2006
Autor: Maiko

Vielen Dank für deine Hilfe!
Du hast mir sehr weitergeholfen.

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de