www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Laplace
Laplace < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 Fr 14.12.2012
Autor: Ice-Man

Hallo, ich habe mal bitte eine Frage zum Dämpfungsatz bei der Laplace Transformierung.
Ich habe folgenden Term gegeben.
[mm] e^{-2t}*cos [/mm] (25t)

Als Lösungsansatz wird der Dämpfungssatz angegeben. Und die Lösung lautet dann

[mm] \bruch{s+2}{(s+2)^{2}+25^{2}} [/mm]

Nur ich kann nicht ganz nachvollziehen wie man dieses Ergebnis erhält.

Der Dämpfungssatz sagt ja aus das vom Zeitbereich [mm] e^{-at}*y [/mm] (t) zum Frequenzbereich Y (s+a) transformiert wird.

Da verstehe ich leider nicht, was das Y genau bedeutet.
Kann mir das bitte jemand erklären bzw. mir erklären wie ich die gegebene Lösung erhalte?

Dafür wäre ich dankbar.

        
Bezug
Laplace: Transformation
Status: (Antwort) fertig Status 
Datum: 09:41 Sa 15.12.2012
Autor: Infinit

Hallo Ice-man,
gehe hier von der Korrespondenz einer Cosinusschwingung aus, dann hast Du folgenden Zusammenhang, wobei L auf die Laplace-Transformierte hinweist:
[mm] L(\cos (25t)) = \bruch{s}{s^2 + 25^2} [/mm]
Jetzt kommt der Dämpfungssatz dran, der Dir sagt, dass Du alle Terme in s durch (s+2) ersetzen musst.
Schon steht Dein Ergebnis da:
[mm] L(e^{-2t} \cdot \cos(25t)) = \bruch{s+2}{(s+2)^2 + 25^2}[/mm]
Viele Grüße,
Infinit

Bezug
                
Bezug
Laplace: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:56 Mo 17.12.2012
Autor: Ice-Man

Ok, das habe ich soweit verstanden.
Dafür vielen Dank.

Und bei der inversen müsste ich ja dann genau "umgekehrt vorgehen", oder?

Nur bei folgendem Beispiel kann ich das noch nicht ganz nachvollziehen.

Ich wollte die inverse bilden von,

[mm] y=\bruch{4}{(s+5)^{4}} [/mm]

[mm] L^{-1}=\bruch{2}{3}t^{3}*e^{-5t} [/mm]

Wie ich den "ersten Term" bestimme ist mir noch klar. Nur wie ich den "zweiten Term" erhalte ist mir noch ein wenig unschlüssig
Als Bemerkung wurde mir noch gesagt das ich auch mit dem "Dämpfungssatz" arbeiten soll.
Ich wäre jetzt einfach davon ausgegangen das ich die 5 einfach nur in den Exponenten von der "e-Funktion" schreiben muss.

Wäre das denn pauschal gesehen einigermaßen korrekt?

Danke schon einmal.

Bezug
                        
Bezug
Laplace: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 19.12.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de