www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Laplace-Transformation" - LaplaceTransformation
LaplaceTransformation < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LaplaceTransformation: Tipp/Partialbruchzerlegung
Status: (Frage) beantwortet Status 
Datum: 14:28 So 27.09.2009
Autor: xPae

Hi ich versage immer bei dieser blöden Partialbruchzerlegung :)

[mm] u'+7u=\bruch{3}{s^{2}+1} [/mm]

[mm] (s+7)*L(u(t))=1+\bruch{3}{s^{2}+1} [/mm]

[mm] L(u(t))=\bruch{1}{s+7}*(1+\bruch{3}{s^{2}+1}) [/mm]

[mm] L(u(t))=\bruch{s^{2}+4}{(s+7)(s^{2}+1} [/mm]

Jetzt Partialbruchzerlegung, leider habe ich das noch nie vorher gehabt und in der Vorlesung nur sehr kurz angesporchen.

Ich finde als einzige Nullstelle -7.
Aber der Ansatz kann doch nicht [mm] \bruch{A_{0}}{s+7} [/mm] lauten, da fehlt ja ordentlich was


danke xpae



        
Bezug
LaplaceTransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 So 27.09.2009
Autor: derdickeduke

Ich glaube die Nullstellensuche wird hier ein bischen unangenehm. Ich gehe im folgenden von deinem letzten Term aus, in Ordnung?
Partialbruchzerlegung von
[mm] \bruch{s^{2}+4}{(s+7)(s^{2}+1)} [/mm]
Partialbruchzerlegung heißt jetzt, dass du das Nennerpolynom in seine Linearfaktoren zerlegst. Mit den den Linearfaktoren [mm] (s-l_1) [/mm] bildest du jetzt:
[mm] \summe_{i=1}^{n}\bruch{A_n}{(s-l_1)^n} [/mm] und summierst die einzelnen Summenterme und setzt sie gleich deinem Bruch, den du partial zerlegen willst. Das löst du dann auf um die [mm] A_n [/mm] zu finden, dann hast du deine Partialbruchzerlegung.

Bezug
                
Bezug
LaplaceTransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 So 27.09.2009
Autor: xPae

Hey,

danke für die Antwort, woher weiss ich jetzt, was [mm] l_{i} [/mm] ist?
Und n?


Danke gruß xPae

Bezug
                        
Bezug
LaplaceTransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 So 27.09.2009
Autor: derdickeduke

[mm] l_1 [/mm] ist die Nullstelle deines Nennerpolynoms
n ist die höchste Potenz in der [mm] (s-l_1) [/mm] vorkommt. In deinem Beispiel wäre ein Linearfaktor (s+7) und n wäre 1. Die anderen Faktoren musst du noch aus [mm] (s^2+1) [/mm] gewinnen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de