www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Laplace-Transformation" - Laplace Transformation Funktio
Laplace Transformation Funktio < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace Transformation Funktio: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:17 Do 06.05.2010
Autor: stevarino

Aufgabe
Betrachten Sie den im folgenden Bild dargestellten Funktionsverlauf u(t):
Lesen Sie aus dem Graphen die Funktionsbeschreibung von u(t) im Zeitbereich
ab.

Hallo

Ich bräuchte mal wieder eure Hilfe bei diesem Beispiel

Rampe t=2
[mm] \bruch{2}{3}\rho*(t-2) [/mm]
Rampe t=5
[mm] -\bruch{2}{3}\rho*(t-5) [/mm]
negativer Sprung t=8
[mm] -\sigma*(t-8) [/mm] bis hier hin ist alles klar

Jetzt steh ich aber komplett auf der Leitung folgendes steht in der Lösung zu deisem Beispiel

negativer Sprung bei t=9 zur kompensation der e-Funktion (muss durch U=1 gehen)
[mm] -\sigma*(t-9) [/mm]
Was mir nicht klar ist, wie man mit einem Einheitssprung eine e-Funktion kolmpensieren kann?

weiter
Ablklingende e-Funktion bei t=9 mit T=1, multipliziert mit dem Einheitssprung um den Einfluss auf den Bereich t<0 zu eleminieren
[mm] \sigma*(t-9)*e^{-(t-9)} [/mm]

Müsste man nicht den Einfluss auf den Bereich t<9 eleminieren

Kann mir jemand die letzten Schritte erklären

lg Stefan

Dateianhänge:
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
        
Bezug
Laplace Transformation Funktio: Antwort
Status: (Antwort) fertig Status 
Datum: 00:04 Sa 08.05.2010
Autor: metalschulze

Hallo,

kapiere ich auch nicht, der letzte Term [mm] \sigma(t-9)*e^{-(t-9)} [/mm] ist richtig. Die zeitversetzte Sprungfunktion schliesst dir ja den Einfluss für t<9 aus...
Bei den Rampen fehlen als Faktor noch zeitversetzte Sprünge...

Du könntest dir die Funktion auch der Einfachheit halber abschnittsweise definieren, dann sparst du dir diese lästigen Überlagerungen mit virtuellen negativen Rampen und so...

Gruss Christian

Bezug
                
Bezug
Laplace Transformation Funktio: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:40 Do 13.05.2010
Autor: stevarino

Hallo nochmal

Erstmal danke für die Antwort
Hätte noch eine Frage zur Tranformation von [mm] \sigma(t-9)\cdot{}e^{-(t-9)} [/mm] laut Lösung bekommt man für  [mm] e^{-(t-9)} \to \bruch{1}{s+1} [/mm]
und somit für [mm] \sigma(t-9)\cdot{}e^{-(t-9)} \to e^{-9s} *\bruch{1}{s+1} [/mm]
was passiert dabei mit dem Einheitssprung ?

Wie kommt man darauf mit einer Transformationstabelle?

Mit der Def der Laplace Transformation kann ich das Ergebniss berechnen aber dauert eben länger.

lg stevo

Bezug
                        
Bezug
Laplace Transformation Funktio: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Sa 15.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de