www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Laurent-Entwicklung
Laurent-Entwicklung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurent-Entwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 Mo 18.02.2013
Autor: blubblub

Aufgabe
Berechnen Sie die jenige Laurent-Entwicklung um [mm] z_0 [/mm] = 0 von
[mm] f(z)=\bruch{1}{z(z+i)(z-5)}die [/mm] auf dem Kreis [mm] \partial K_2(0) [/mm] gleichmäßig konvergiert und bestimmen Sie ihren maximalen
Konvergenzbereich


Hallo,
ich lerne zur Zeit für die Klausur und bräuchte Hilfe für die oben stehende Aufgabe.

Das sind meine Ideen bis jetzt:
[mm] f(z)=\bruch{(z-5)^{-1}}{z(z+i)} [/mm] (man kann es so schreiben, da ja die 5 nicht in der zu betrachteten Kugel liegt)

Da (z-5)^(-1)holomorph auf [mm] \partial K_2(0) [/mm] ist, betrachte ich nun [mm] \bruch{1}{z(z+i)} [/mm]

Die Partialbruchzerlegung liefert mir folgendes:

[mm] \bruch{(-i)}{z}+ \bruch{i}{z+i} [/mm]


Der Ausdruck [mm] \bruch{(-i)}{z} [/mm] ist ja bereits eine Laurent-Reihe um 0, bleibt also so stehen.

Für den zweiten Summanden brauche ich die Hilfe:
Die Kugel ist ja so definiert [mm] 0\le |z-0|\le [/mm] 2

Woher weiß ich, ob ich nun aus [mm] \bruch{i}{z+i} [/mm] die 1/z oder 1/(-i) hinaus holen muss damit ich auf die Geometrische Reihe hinaus kann?

Danke schon mal :-)



        
Bezug
Laurent-Entwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:53 Di 19.02.2013
Autor: fred97

Tipp:

f hat Pole in 0, in i und in 5.

Du sollst die Laurententw. von f auf dem Kreisring [mm] A:=\{z: 1<|z|<5 \} [/mm] bestimmen.

Diese Entw. konvergiert dann lokal glm. auf A. Damit konv. sie glm. auf  $ [mm] \partial K_2(0) [/mm] $

FRED

Bezug
                
Bezug
Laurent-Entwicklung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:24 Di 19.02.2013
Autor: blubblub

Hallo,

danke für die schnelle antwort :-)

jedoch hab ich noch eine kleine Frage:

was wäre, wenn ich nur die kugel gegeben hätte und nicht den maximalen bereich  angeben müsste

kann ich dann trotzdem K_(1,5)(0) angeben und damit rechnen??

Bezug
                        
Bezug
Laurent-Entwicklung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 21.02.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de