www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Laurentreihe
Laurentreihe < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurentreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Sa 22.09.2007
Autor: LL0rd

Aufgabe
Man soll folgendes Integral lösen:

[mm] \integral_{|z|=3}{ \bruch{e^{\bruch{1}{z}} }{(z-1)^2 -1 } dz} [/mm]

Hallo,

diese Aufgabe habe ich aus einer alten Prüfung rausgefischt. Es geht da um das Lösen von Integralen mittels des Residuensatzes. Wenn ich die Aufgabe jetzt mal einfach anfange zu rechnen, dann suche ich die Singularitäten heraus. Ich sehe hier zwei einfache Polstellen bei 2 und 0. Und hier fängt das eigentliche Problem auch schon an. Im Zähler des Bruches habe ich ja ein [mm] \bruch{1}{z} [/mm] stehen. Also kann ich mit der Null nicht auf die 0815-Art rechnen.

Bei der 2 ist das ganze ja kein Problem:
[mm] Res(f;2)=\bruch{1}{2} e^{\bruch{1}{2}} [/mm]

In der Musterlösung wird Res(f;0) mittels der Laurentreine bestimmt. Das Ergebnis ist:

[mm] Res(f;0)=-\bruch{1}{2} e^{\bruch{1}{2}} [/mm]

Aber wie kommt man denn darauf? Ich verstehe nicht ganz, wie ich das Ganze mit der Reihe lösen kann. Klar, ich nehme mir die Reihe vor, setze dort dann das 1/z ein, aber was mache ich denn damit weiter? Kann mir jemand da etwas helfen? Danke!


        
Bezug
Laurentreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Sa 22.09.2007
Autor: rainerS

Hallo!

> Man soll folgendes Integral lösen:
>  
> [mm]\integral_{|z|=3}{ \bruch{e^{\bruch{1}{z}} }{(z-1)^2 -1 } dz}[/mm]
>  
> Hallo,
>  
> diese Aufgabe habe ich aus einer alten Prüfung
> rausgefischt. Es geht da um das Lösen von Integralen
> mittels des Residuensatzes. Wenn ich die Aufgabe jetzt mal
> einfach anfange zu rechnen, dann suche ich die
> Singularitäten heraus. Ich sehe hier zwei einfache
> Polstellen bei 2 und 0. Und hier fängt das eigentliche
> Problem auch schon an. Im Zähler des Bruches habe ich ja
> ein [mm]\bruch{1}{z}[/mm] stehen. Also kann ich mit der Null nicht
> auf die 0815-Art rechnen.

Richtig, denn [mm]\exp(1/z)[/mm] hat eine wesentliche Singularität im Punkt z=0.

> Bei der 2 ist das ganze ja kein Problem:
>  [mm]Res(f;2)=\bruch{1}{2} e^{\bruch{1}{2}}[/mm]
>  
> In der Musterlösung wird Res(f;0) mittels der Laurentreine
> bestimmt. Das Ergebnis ist:
>  
> [mm]Res(f;0)=-\bruch{1}{2} e^{\bruch{1}{2}}[/mm]

Das ist meiner Meinung nach falsch.

> Aber wie kommt man denn darauf? Ich verstehe nicht ganz,
> wie ich das Ganze mit der Reihe lösen kann. Klar, ich nehme
> mir die Reihe vor, setze dort dann das 1/z ein, aber was
> mache ich denn damit weiter? Kann mir jemand da etwas
> helfen? Danke!

Als erstes schreibst du den Nenner um, dann benutzt due die Reihenentwicklung für die Exponentialfunktion und die geometrische Reihe:

[mm]\bruch{\mathrm{e}^{1/z}}{z(z-2)} = \bruch{1}{2z^2} \bruch{1}{1-\bruch{1}{2z}}\mathrm{e}^{1/z}= \bruch{1}{2}\bruch{1}{z^2} \left(\summe_{i=0}^{\infty}\bruch{1}{(2z)^i}\right) \left(\summe_{j=0}^\infty \bruch{1}{j!} \bruch{1}{z^j}\right)[/mm]

Jetzt siehst du, dass der erste Term der Laurentreihe [mm]z^{-2}[/mm] ist, denn beide unendlichen Summen fangen mit einem konstanten Glied an. Also ist das Residuum im Punkt z=0 Null.

Es geht aber viel einfacher: Substituiere u=1/z:

[mm]\integral_{|z|=3}{ \bruch{e^{\bruch{1}{z}} }{(z-1)^2 -1 } dz} = -\integral_{|u|=1/3} {\bruch{e^{u} }{1-2u} du}[/mm]

Das zweite Integral lässt sich etwas einfacher ausrechnen. ;-)

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de