www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Laurentreihe Eigenschaften
Laurentreihe Eigenschaften < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurentreihe Eigenschaften: Idee
Status: (Frage) beantwortet Status 
Datum: 17:55 Sa 05.05.2012
Autor: Lonpos

Aufgabe
[mm] f(z)=\summe_{n=-\infty}^{\infty}c_n*z^n [/mm] , [mm] c_{-1}=0 [/mm]

Ich würde gerne zeigen, dass f eine Stammfunktion besitzt.


Also [mm] \exists [/mm] F: F'=f

Kann ich das wie folgt machen?

[mm] \integral_{}^{}{f(z) dz}=\summe_{n=-\infty}^{\infty}\integral_{}^{}{c_n*z^n dz}=\summe_{n=-\infty}^{\infty}c_n*(\bruch{z^{n+1}}{n+1}) [/mm]

Gliedweise integrieren darf ich aufgrund gleichmäßiger Konvergenz.

        
Bezug
Laurentreihe Eigenschaften: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Sa 05.05.2012
Autor: fred97


> [mm]f(z)=\summe_{n=-\infty}^{\infty}c_n*z^n[/mm] , [mm]c_{-1}=0[/mm]
>  
> Ich würde gerne zeigen, dass f eine Stammfunktion
> besitzt.
>  
> Also [mm]\exists[/mm] F: F'=f
>  
> Kann ich das wie folgt machen?
>  
> [mm]\integral_{}^{}{f(z) dz}=\summe_{n=-\infty}^{\infty}\integral_{}^{}{c_n*z^n dz}=\summe_{n=-\infty}^{\infty}c_n*(\bruch{z^{n+1}}{n+1})[/mm]
>  
> Gliedweise integrieren darf ich aufgrund gleichmäßiger
> Konvergenz.

Ja

FRED

>  


Bezug
                
Bezug
Laurentreihe Eigenschaften: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Sa 05.05.2012
Autor: Lonpos

Danke für die Bestätigung. Eine Frage hätte ich noch, und zwar wieso die folgende Gleichheit gilt, jedoch unter der Annahme das der Laurentreihenentwicklungssatz noch nicht bewiesen wurde.

[mm] \integral_{|z|=a}^{}{f(z) dz}=2*\pi*i*c_{-1} [/mm]  r<a<R

Bezug
                        
Bezug
Laurentreihe Eigenschaften: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 Sa 05.05.2012
Autor: teo

Hallo

> Danke für die Bestätigung. Eine Frage hätte ich noch,
> und zwar wieso die folgende Gleichheit gilt, jedoch unter
> der Annahme das der Laurentreihenentwicklungssatz noch
> nicht bewiesen wurde.
>  
> [mm]\integral_{|z|=a}^{}{f(z) dz}=2*\pi*i*c_{-1}[/mm]  r<a<R

Das ist doch der Residuensatz! Und das Residuum von f in 0 ist gerade der Koeffizient [mm] c_{-1}. [/mm] Also hast du alles was du brauchst auch ohne Laurentreihenentwicklungssatz.

Grüße

Bezug
                                
Bezug
Laurentreihe Eigenschaften: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 Sa 05.05.2012
Autor: Lonpos

Ich weiß, dass es das Residuum von f bei [mm] z_0 [/mm] ist, nur wieso schaut es genau so aus?

Bezug
                                        
Bezug
Laurentreihe Eigenschaften: Antwort
Status: (Antwort) fertig Status 
Datum: 08:55 So 06.05.2012
Autor: fred97


> Ich weiß, dass es das Residuum von f bei [mm]z_0[/mm] ist, nur
> wieso schaut es genau so aus?  


Die Reihe

$ [mm] f(z)=\summe_{n=-\infty}^{\infty}c_n\cdot{}z^n [/mm] $

darfst Du gliedweise integrieren.

Für n [mm] \ne [/mm] -1 ist das Integral über [mm] c_n\cdot{}z^n [/mm] gleich Null, denn [mm] c_n\cdot{}z^n [/mm] hat auf [mm] \IC [/mm]  \ {0} eine Stammfunktion.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de