www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Lebendauerverteilung
Lebendauerverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebendauerverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 Mi 14.12.2005
Autor: Vladimir_Spidla

Aufgabe
Eine bestimmte Sicherungsanlage besteht aus zwei unabhaengig voneinander arbeitenden parallel geschalteten Bauelemente (BE). Die Anlage ist voll wirksam, sonlange min. ein BE funktioniert. Das zweite BE stellt sogenannte heisse Reserve dar. d.h. es ist staendig in Betrieb und wird nicht erst dann zugeschaltet, wenn das andere BE ausfaellt. Eine Ueberpruefung der BE ergab, dass die Lebensdauer (in Monaten) eine Rayleigh-Verteilung besitzt, deren Dichtefunktion wie folgt lautet: f(x) = 2x exp(-x²)
a) Mit welcher WK funktioniert die Anlage mehr als zwei Monate
b) Welche Lebensdauer der Sicherungsanlage kann mit min. 95% Sicherheit garantiert werden?

Teilaufgabe a.) hab ich problemfrei geloest [mm] F(X)=\int_{-\infty}^{x} f(x)\, dx = 0,0183 [/mm] , da halt von null bis 2 Monate betrachtet werden muss.
[mm] P(syst)=1-(1-0,0183)^2 [/mm] = 0,036.

bei Aufgabe b.) hab ich allerdings ein Verstaendnisproblem.
Meine Loesung:
0.95= 1-(1-x)² x=0,776 ( die 2.Loesung kann ja vernachlaessigt werden da sie ueber 1 ist)
[mm] 0.776 = \integral_{0}^{b} {f(x) dx}... [/mm]
richtig ist aber
[mm] 0.776 = \integral_{0}^{b} {f(x) dx}...[/mm]

Ich stell mir eine Funktion in mit einem Punkt b links davon liegen die 95% rechts davon die restlichen 5%. Da mich die 95% interessieren integriere ich von 0 bis b.

Warum muss ich aber von b bis unendlich integrieren ?

/Vladimir


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lebendauerverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Do 15.12.2005
Autor: Hugo_Sanchez-Vicario

Hallo Vladimir,

erst einmal willkommen im MatheRaum.

für die Dichtefunktion $F(x)$ der Lebenserwartung und gilt doch:
Die Wahrscheinlichkeit, dass die Anlage mindestens $a$ und höchstens $b$ Monate fuktioniert, berechnet sich aus dem Integral
[mm] $\int_{a}^{b}F(x)dx$. [/mm]

Die Wahrscheinlichkeit, dass die Lebensdauer eine bestimmte Untergrenze überschreitet, soll nun größer sein als 95%, also:

Bestimme $a$ so, dass [mm] $\int_{a}^{\infty}F(x)dx$ [/mm] > $0.95$.

Du hast mit deiner Lösung berechnet, nach welcher Zeit die Anlage mit 95%iger Wahrscheinlichkeit ausfällt. (Das Integral von 0 bis $b$ fragt nach der Wahrscheinlichkeit, dass die Anlage nach höchstens $b$ Monaten ausfällt.)


Ich hoffe, meine Antwort hilft dir weiter.

Hugo

PS: Wenn du möchtest, darfst du auch gerne selbst Fragen von anderen beantworten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de