www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Lebesgue-Integral
Lebesgue-Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesgue-Integral: Frage
Status: (Frage) beantwortet Status 
Datum: 14:15 So 30.01.2005
Autor: mtuente

Hallo!
Ich studiere Mathe auf Gymnasiallehramt und wir haben jetzt in Analysis II mit dem Lebesgue-Integral angefangen. Mein Problem ist, dass ich mir das alles nicht so gut vorstellen kann. Kann man das Lebesgue-Integral auch veranschaulichen (wie beim Riemannschen Integral) und wenn wie?
Vielleicht kann mir ja auf meine Frage irgendeiner eine Antwort geben. Ich würde mich freuen,
viele Grüße, Michaela


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Lebesgue-Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 So 30.01.2005
Autor: Micha

Hallo Michaela!

Also wenn ich mal frei aus dem Analysis-Script meines Professors aus der Einleitung zitieren darf:

"Es gibt verschiedene Integralbegriffe, zum Beispiel
• das Regelintegral
• das Riemannsche Integral, das lange Zeit in den Lehrbüchern der Analysis Standard
war, und
• das Lebesguesche Integral, das wir in diesem Semester betrachten wollen.
Für Treppenfunktionen, ja für alle ”anständigen“ Funktionen, liefern diese Integrale denselben
Wert. Sie unterscheiden sich aber hinsichtlich der jeweiligen Menge der ”integrierbaren“
Funktionen; diese Menge vergrößert sich bei den obigen drei Integralbegriffen in der angegebenen
Reihenfolge.
Aber es ist nicht das Ziel, möglichst ”exotische“ Funktionen auch noch integrieren zu können,
es geht um andere Vorteile: In vielen Anwendungen der Analysis möchte man Grenzwertprozesse
in Funktionenräumen, zum Beispiel im Raum der integrierbaren Funktionen, durchführen.
Ein Beispiel aus der Theorie der Differentialgleichungen haben Sie im letzten Semester beim
Beweis des Satzes von Picard-Lindelöf gesehen. Oder man möchte, dass unter möglichst
allgemeinen Voraussetzungen
[mm]\lim_{n \to \infty} \integral{f_n} = \integral {\lim_{n \to \infty} f_n} [/mm]

gilt. Auf diesem Feld gewinnt das Lebesgueintegral um Längen!
Der wesentliche Unterschied in den Definitionen kommt (jedenfalls bei unserem Zugang)
folgendermaßen zustande:
Zunächst definiert man das Integral für Treppenfunktionen auf die offensichtliche Weise.
Dann erweitert man es auf Funktionen, die sich ”gut“ durch Treppenfunktionen approximieren
lassen. Der Unterschied liegt in der Definition von ”gut“.
• Bei den Regelfunktionen betrachtet man Grenzwerte von Folgen von Treppenfunktionen
im Sinne gleichmäßiger Konvergenz.
• In der Riemannschen Theorie betrachtet man Funktionen, die sich zwischen zwei
Treppenfunktionen mit beliebig klein vorgegebener Integraldifferenz einsperren lassen
(Sandwiching).
• In der Lebesgueschen Theorie schließlich betrachtet man Grenzwerte von monotonen
Folgen von Treppenfunktionen. "


Um es nochmal kurz zusammenzufassen: Der Wesentlich Unterschied ist genau der letzte Punkt. Das Lebesgue-Integral benötigt eine Folge von Treppenfunktionen, die monoton ist, die konvergieren müssen und deren Integrale dazu sich "vernünftig" verhalten. Dann weißt man der Grenzfolge der Treppenfunktionen den Wert des Integrales zu. Im Unterschied zum Regelintegral muss die Treppenfunktionsfolge aber nicht gleichmäßig konvergieren.

Gruß Micha ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de