www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Legendre-Symbol
Legendre-Symbol < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Legendre-Symbol: Unklarheit
Status: (Frage) beantwortet Status 
Datum: 13:19 Di 05.07.2011
Autor: Olek


Hi!
Ich bin etwas irritiert - aber es ist bestimmt leicht mir zu helfen:
Die Ergänzungssätze zum quadr. Reziprozitätsgesetz geben an, wie man das Legendre-Symbol von [mm]\left ( \frac{2}{p} \right )[/mm] und [mm]\left ( \frac{-1}{p} \right )[/mm] bestimmt.
Nun möchte ich <span class="math">[mm]\left ( \frac{1}{p} \right )[/mm] berechnen. Ich sehe 2 Möglichkeiten:
1. Anwendung des Euler-Kriteriums. => [mm]1^\frac{p-1}{2}[/mm] = 1
2. Forme [mm]\left ( \frac{1}{p} \right )[/mm] um zu <span class="math">[mm]-1*\left ( \frac{-1}{p} \right )[/mm]. Wende nun das quadr. Rez.ges. an & erhalte:
<span class="math">[mm]-1*(-1)^\frac{p-1}{2}[/mm]. Das ist allerdings nich immer =1, sondern für <span class="math">[mm]p\equiv1 (mod 4)[/mm] =-1.

Wo ist der Fehler?
Vielen Dank für eure Hilfe!
Gruß,
Olek

</span></span></span></span>

        
Bezug
Legendre-Symbol: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 Di 05.07.2011
Autor: schachuzipus

Hallo Olek,

>
> Hi!
> Ich bin etwas irritiert - aber es ist bestimmt leicht mir
> zu helfen:
> Die Ergänzungssätze zum quadr. Reziprozitätsgesetz
> geben an, wie man das Legendre-Symbol von [mm]\left ( \frac{2}{p} \right )[/mm]
> und [mm]\left ( \frac{-1}{p} \right )[/mm] bestimmt.
> Nun möchte ich <SPAN class=math>[mm]\left ( \frac{1}{p} \right )[/mm]
> berechnen. Ich sehe 2 Möglichkeiten:
> 1. Anwendung des Euler-Kriteriums. => [mm]1^\frac{p-1}{2}[/mm] = 1 [ok]
> 2. Forme [mm]\left ( \frac{1}{p} \right )[/mm] um zu <SPAN

[mm]-1*\left ( \frac{-1}{p} \right )[/mm].

Kann man das denn so umformen? Das ist doch keine normale (Bruch-)Rechnung in [mm] $\IR$ [/mm] ...

> Wende nun
> das quadr. Rez.ges. an & erhalte:
> <SPAN class=math>[mm]-1*(-1)^\frac{p-1}{2}[/mm]. Das ist
> allerdings nich immer =1, sondern für <SPAN
> class="math">[mm]p\equiv1 (mod 4)[/mm] =-1.
>
> Wo ist der Fehler?
> Vielen Dank für eure Hilfe!
> Gruß,
> Olek

</SPAN></SPAN></SPAN></SPAN>
Gruß

schachuzipus


Bezug
        
Bezug
Legendre-Symbol: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Di 05.07.2011
Autor: Al-Chwarizmi


>  Die Ergänzungssätze zum quadr. Reziprozitätsgesetz
> geben an, wie man das Legendre-Symbol von [mm]\left ( \frac{2}{p} \right )[/mm]
> und [mm]\left ( \frac{-1}{p} \right )[/mm] bestimmt.
>  Nun möchte ich [mm]\left ( \frac{1}{p} \right )[/mm]
> berechnen. Ich sehe 2 Möglichkeiten:
>  1. Anwendung des Euler-Kriteriums. => [mm]1^\frac{p-1}{2}[/mm] = 1

>  2. Forme [mm]\left ( \frac{1}{p} \right )[/mm] um zu [mm]-1*\left ( \frac{-1}{p} \right )[/mm].   [haee]

diesen Fehler hat schachuzipus schon gemeldet
  

> Wende nun das quadr. Rez.ges. an & erhalte:
>  [mm]-1*(-1)^\frac{p-1}{2}[/mm]. Das ist
> allerdings nich immer =1, sondern für[mm]p\equiv1 (mod 4)[/mm] =-1.


Hallo Olek,

zur Bestimmung von  [mm] \left(\frac{1}{p}\right) [/mm] braucht man doch gar keine
Theorie, sondern nur die Definition, da  $\ [mm] 1^2\equiv1\,(mod\ [/mm] p)$
für jedes p gilt.
Wegen  [mm] $\left(\frac{-1}{p}\right)*\left(\frac{-1}{p}\right)\ [/mm] =\ [mm] \left(\frac{(-1)*(-1)}{p}\right)\ [/mm] =\ [mm] \left(\frac{1}{p}\right)$ [/mm]
kann man dann zunächst schließen, dass für [mm] \left(\frac{-1}{p}\right) [/mm] nur
die Werte +1 und -1 in Frage kommen. Das Eulersche Kriterium
liefert (für [mm] p\not=2) [/mm] den richtigen Wert, nämlich +1 , falls p mod 4 = 1
und -1, falls p mod 4 = 3.
Für p=2 hat man [mm] $\left(\frac{-1}{p}\right)\ [/mm] =\ [mm] \left(\frac{-1}{2}\right)\ =\left(\frac{1}{2}\right)\ [/mm] =\ 1$

LG   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de