www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Leibniz-Kriterium
Leibniz-Kriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leibniz-Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:46 Sa 30.06.2012
Autor: rollroll

Aufgabe
Prüfe auf Konvergenz:
[mm] \summe_{n=1}^{\infty} (-1)^n \bruch{(\pi)^n}{(n+1)!} [/mm]

Ich verwende das Leibniz-Kriterium, muss also zeigen, dass die Folge [mm] a_n [/mm] =  [mm] \bruch{(\pi)^n}{(n+1)!} [/mm] eine monoton fallende Nullfolge ist. Nullfolge konnte ich nachweisen, ich hänge bei der Monotonie, denn für [mm] \bruch{a_n}{a_{n+1}} \ge [/mm] 1 erhalte ich nach Umformen: (n+2)/ [mm] \pi \ge [/mm] 1. Wenn ich aber n=1 ist, dann geht das schief und die Monotonie muss ja für alle n gelten... Kann ich daraus folgern: [mm] a_n [/mm] nicht monoton fallend --> Reihe divergiert?

        
Bezug
Leibniz-Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Sa 30.06.2012
Autor: Diophant

Hallo,

> ... Nullfolge konnte ich nachweisen, ich hänge
> bei der Monotonie, denn für [mm]\bruch{a_n}{a_{n+1}} \ge[/mm] 1
> erhalte ich nach Umformen: (n+2)/ [mm]\pi \ge[/mm] 1. Wenn ich aber
> n=1 ist, dann geht das schief und die Monotonie muss ja
> für alle n gelten...

Irrtum: die Monotonie muss nur für fast alle Glieder gelten. Ein kleiner, aber entscheidender Unterschied.


Gruß, Diophant


Bezug
                
Bezug
Leibniz-Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 Sa 30.06.2012
Autor: rollroll

bist du ganz sicher? Denn in meiner Mitschrift steht [mm] \forall [/mm] n [mm] \in [/mm] IN... Hab auch extra noch mal in zwei Büchern geschaut, da stehts auch so...

Bezug
                        
Bezug
Leibniz-Kriterium: fast alle oder doch alle
Status: (Antwort) fertig Status 
Datum: 14:56 Sa 30.06.2012
Autor: Helbig

Hallo rollroll,

> bist du ganz sicher? Denn in meiner Mitschrift steht
> [mm]\forall[/mm] n [mm]\in[/mm] IN... Hab auch extra noch mal in zwei
> Büchern geschaut, da stehts auch so...

Bei allen Konvergenzkriterien kann man "für alle" durch "für fast alle" ersetzen, denn eine Reihe bleibt konvergent, auch wenn die ersten $N$ Glieder das Kriterium nicht erfüllen.

Gruß,
Wolfgang


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de