Leibniz-Kriterium Beweisen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Beweisen Sie das Leibniz-Kriterium: Sei [mm] \summe_{k=0}^{\infty} a_k [/mm] alternierend, d.h. sgn( [mm] a_n a_{n+1} ) = -1 [/mm] für alle [mm] n \in \IN [/mm]. Ist [mm] (|a_n|) [/mm] zusätzlich eine monoton fallende Nullfolge, dann ist [mm] \summe_{k=0}^{\infty} a_k [/mm] konvergent.
Hinweis: Schätzen Sie [mm] \summe_{k=n+1}^{m} a_k [/mm] induktiv ab. |
Hallo liebe Mathematiker,
bin neu im Forum und hab mir mal die schwierigste Aufgabe aus meiner Wochenzetteln für Analysis I rausgesucht. Leider muss ich sagen das ich überhaupt nicht weiß wo ich anfangen soll, zwar weiß ich was alternierend und konvergent bedeutet aber wie ich überhaupt hier zu einem Nenner komme ist mir nicht klar, leider hab ich auch nirgendwo anders einen Ansatzweise ähnliches Problem gefunden.
Wäre nett wenn einer sich die Zeit nimmt und mir eventuell einen Tipp oder Ansatz geben könnte womit ich eventuell weiter machen könnt.
Vielen dank und Liebe Grüße im Vorraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:35 Di 30.11.2010 | Autor: | Pia90 |
Hallo!
Für die Konvergenz musst du zeigen, dass [mm] \forall \varepsilon [/mm] > 0 [mm] \exists n_0 \forall m>n>n_0 [/mm] : | [mm] \summe_{k=n}^{m} (-1)^k \* a_k [/mm] | < [mm] \varepsilon
[/mm]
Da [mm] a_k [/mm] mon. fallens, gilt [mm] a_j [/mm] - [mm] a_{j+1} \ge [/mm] 0 für alle j.
=> | [mm] \summe_{k=n}^{m} (-1)^k \* a_k [/mm] | = [mm] |(-1)^n \* a_n [/mm] + [mm] (-1)^{n+1} \* a_{n+1} [/mm] + ...|
=...
und schließlich
[mm] \le a_n [/mm] = [mm] |a_n [/mm] |
Sei [mm] \varepsilon [/mm] > 0 nun beliebig. Wegen [mm] a_n [/mm] -> 0 gibt es ein [mm] n_0, [/mm] sodass [mm] |a_n| [/mm] < [mm] \varepsilon [/mm] für alle n [mm] \ge n_0 [/mm] ist.
Nach obiger Abschätzung folgt:
| [mm] \summe_{k=n}^{m} (-1)^k \* a_k [/mm] | [mm] \le |a_n| \le \varepsilon [/mm] für alle n > [mm] n_0.
[/mm]
q.e.d.
|
|
|
|