www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Leibniz Regel
Leibniz Regel < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leibniz Regel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 Mi 03.12.2008
Autor: Lueger

Hallo,


letztes Semster hatten wir folgendes Integral
     [mm] g(x) = \integral_{a(x)}^{b(x)}{f(z) dz}[/mm]
Gesucht war die Ableitung
also
[mm]\bruch{d g(x)}{dx}[/mm]
dann habe ich F(x) allgemein bestimmt

[mm] g(x) = F(x) = - F(a(x)) + F(b(x)) [/mm]

und dann die Ableitung gebildet

[mm] \bruch{d g(x)}{dx} = f(b(x)) * \bruch {db(x)}{dx} - f(a(x)) * \bruch {da(x)}{dx}[/mm]

Soweit müsste das stimmen und hat auch immer funktioniert.

Jetzt haben wir Funktionen


[mm] g(y) = \integral_{a(y)}^{b(y)}{f(x,y) dx}[/mm]

Wenn ich wie oben vorgehe komme ich auf

[mm] \bruch{dg(y)}{dy}= f(b(y),y) * \bruch {db(y)}{dy} - f(a(y),y) * \bruch {da(y)}{dy} [/mm]

Laut Leibniz-Regel fehlt aber noch ein [mm]\integral_{a(y)}^{b(y)}{\bruch{df(x,y)}{dy} dx} [/mm]

Was mache ich falsch und wo kommt der Summand her ???

Vielen Dank

Grüße
Lueger

        
Bezug
Leibniz Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Mi 03.12.2008
Autor: MathePower

Hallo Lueger,

> Hallo,
>  
>
> letztes Semster hatten wir folgendes Integral
>       [mm]g(x) = \integral_{a(x)}^{b(x)}{f(z) dz}[/mm]
>  Gesucht war
> die Ableitung
>  also
> [mm]\bruch{d g(x)}{dx}[/mm]
>  dann habe ich F(x) allgemein bestimmt
>  
> [mm]g(x) = F(x) = - F(a(x)) + F(b(x))[/mm]
>  
> und dann die Ableitung gebildet
>  
> [mm]\bruch{d g(x)}{dx} = f(b(x)) * \bruch {db(x)}{dx} - f(a(x)) * \bruch {da(x)}{dx}[/mm]
>  
> Soweit müsste das stimmen und hat auch immer funktioniert.
>  
> Jetzt haben wir Funktionen
>  
>
> [mm]g(y) = \integral_{a(y)}^{b(y)}{f(x,y) dx}[/mm]
>  
> Wenn ich wie oben vorgehe komme ich auf
>
> [mm]\bruch{dg(y)}{dy}= f(b(y),y) * \bruch {db(y)}{dy} - f(a(y),y) * \bruch {da(y)}{dy}[/mm]
>  
> Laut Leibniz-Regel fehlt aber noch ein
> [mm]\integral_{a(y)}^{b(y)}{\bruch{df(x,y)}{dy} dx}[/mm]
>  
> Was mache ich falsch und wo kommt der Summand her ???


Hier hast Du ja

[mm]F\left(x\left(y\right),y\right)[/mm]

Die Ableitung wird hier gemäß Kettenregel gebildet:

[mm]\bruch{\partial F}{\partial x}*\bruch{\partial x}{\partial y}+\bruch{\partial F}{\partial y}[/mm]

mit

[mm]\bruch{\partial F}{\partial y}=\bruch{\partial}{\partial y}\integral_{a\left(y\right)}^{b\left(y\right)}{f\left(x,y\right) \ dx}=\integral_{a\left(y\right)}^{b\left(y\right)}{\bruch{\partial f\left(x,y\right)}{\partial y} \ dx}[/mm]


>  
> Vielen Dank
>
> Grüße
>  Lueger


Gruß
MathePower

Bezug
                
Bezug
Leibniz Regel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:49 Fr 05.12.2008
Autor: Lueger

Hallo MathePower,

danke für deine Antwort.
Das ist doch die Geschichte mit der totalen Diffbarkeit, oder?
Dann werde ich das noch mal genauer studieren. Wenn ich dann noch Fragen habe melde ich mich noch mal ....

Danke!

Gruß
Lueger

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de