www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Leitkoeffizienten, Ideale
Leitkoeffizienten, Ideale < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leitkoeffizienten, Ideale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Do 23.10.2008
Autor: Brazzo

Aufgabe
Sei R ein Ring und [mm] \mathcal{A} [/mm] ein Ideal in R[x], lc(f) der Leitkoeffizient von f [mm] \in [/mm] R[x].
Zu zeigen ist: [mm] lc(\mathcal{A}) [/mm] := [mm] \{ lc(f) | 0 \neq f \in \mathcal{A} \} \cup \{0\} [/mm] ist ein Ideal in R

Hallo,
ich habe wider Erwarten tatsächlich ein Problem mit obiger Aufgabe.

2 der 3 Idealeigenschaften sind leicht gezeigt, doch bei der Abgeschlossenheit bzgl. Addition hapert es.

Man betrachtet also 2 Elemente a,b aus [mm] lc(\mathcal{A}). [/mm] Dann muss es f,g [mm] \in \mathcal{A} [/mm] geben mit a=lc(f) und b=lc(g). Zu zeigen ist also, dass es ein h [mm] \in \mathcal{A} [/mm] gibt mit lc(h)=lc(f)+lc(g). Das ist trivial, wenn a oder b 0 sind oder wenn f und g denselben Grad haben(Dann ist h=f+g [mm] \in \mathcal{A}). [/mm] Doch was ist, wenn f und g unterschiedlichen Grades sind? Oder muss ich diesen Fall aus Gründen, die mir nicht einfallen gar nicht betrachten?

Würde mich über Hinweise freuen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Leitkoeffizienten, Ideale: Hinweis
Status: (Antwort) fertig Status 
Datum: 14:42 Do 23.10.2008
Autor: Gnometech

Hallo,

wenn $f$ und $g$ verschiedenen Grad haben, also o.B.d.A. [mm] $\deg [/mm] f = n > [mm] \deg [/mm] g = m$, dann betrachte einfach $g' = g [mm] \cdot x^{n - m}$. [/mm] Wegen der Idealeigenschaft gilt $g' [mm] \in \mathcal{A}$ [/mm] und der Leitkoeffizient ändert sich nicht.

Liebe Grüße,
Lars

Bezug
                
Bezug
Leitkoeffizienten, Ideale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 Do 23.10.2008
Autor: Brazzo

Ich hab ja fast befürchtet, dass die Lösung so offensichtlich ist und ich nur ein Riesen-Brett vorm Kopf habe...

Vielen Dank jedenfalls!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de