www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Lemma von Bézout
Lemma von Bézout < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lemma von Bézout: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:16 Fr 19.09.2008
Autor: johnny11

Aufgabe
Beweisen Sie das Lemma von Bézout: Es gibt [mm] \alpha, \beta \in \IZ [/mm] mit ggT(a,b) = [mm] \alpha*a [/mm] + [mm] \beta*b. [/mm]

Ich würde dieses Lemma gerne mit Hilfe des euklidischen Algorithmus beweisen. Der Algorithmus ist mir bekannt, ich weiss aber nicht genau, wie ich für den Beweis vorgehen soll...!
Wie kann ich da am besten beginnen?

        
Bezug
Lemma von Bézout: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 22:12 Fr 19.09.2008
Autor: rabilein1


>  Wie kann ich da am besten beginnen?

Um es vorweg zu sagen: Ich habe keine Ahnung von "Beweisen".
Aber ich habe eine Idee, wie man beginnen könnte.

Ich nehme zum Beispiel: a=20 und b=12

Es ist 20=4*5  und 12=4*3   ==>  der ggT ist also 4

Du suchst nun also [mm] \alpha [/mm] und [mm] \beta [/mm] , so dass
4 = [mm] \alpha [/mm] *20 +  [mm] \beta [/mm] *12   (hier ist [mm] \alpha [/mm] = 2  und [mm] \beta [/mm] = -3)

Man könnte die ganze Gleichung auch durch 4 (also den ggT) dividieren:
1 = [mm] \alpha [/mm] *5 +  [mm] \beta [/mm] *3

Die 5 bzw. die 3 sind dabei die Restfaktoren aus den obigen Gleichungen
20=4*5  und 12=4*3

Diese "Restfaktoren" sind jeweils das Produkt aus Primfaktoren, wobei kein Primfaktor in beiden "Restfaktoren" gleichzeitig vorkommen darf (ansonsten würde er ja in den ggT einfließen).

So, und nun müsste man abschließend zeigen, dass es stets eine natürliche Zahl [mm] \alpha [/mm] und  [mm] \beta [/mm] gibt, so dass gilt:
[mm] \alpha [/mm] * [mm] R_{1} [/mm] - [mm] \beta [/mm] * [mm] R_{2} [/mm] = 1  

[mm] (R_{1} [/mm] und  [mm] R_{2} [/mm] sind die Restfaktoren)


Wie gesagt:  Ich weiß nicht, ob so etwas als "Beweis" zählt, aber zumindest ist es ein Ansatz


Bezug
        
Bezug
Lemma von Bézout: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:42 Sa 20.09.2008
Autor: angela.h.b.


> Beweisen Sie das Lemma von Bézout: Es gibt [mm]\alpha, \beta \in \IZ[/mm]
> mit ggT(a,b) = [mm]\alpha*a[/mm] + [mm]\beta*b.[/mm]
>  Ich würde dieses Lemma gerne mit Hilfe des euklidischen
> Algorithmus beweisen. Der Algorithmus ist mir bekannt, ich
> weiss aber nicht genau, wie ich für den Beweis vorgehen
> soll...!
>  Wie kann ich da am besten beginnen?

Hallo,

Du kannst ja mal []hier spitzeln.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de