www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Axiomatische Mengenlehre" - Lemma von Zorn
Lemma von Zorn < axiomatisch < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lemma von Zorn: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:36 So 15.11.2009
Autor: PromHH

Aufgabe
Zeigen Sie, mit Hilfe des Lemmas von Zorn, daß für zwei Mengen A,B stets |A| ≥ |B| oder |B| ≥ |A| gilt.

Guten Abend! Leider fehlt mir für diese Aufgabe ein richtiger Ansatz, da ich das Lemma von Zorn (Jede total-geordnete Menge hat ein maximales Element) nicht in Zusammenhang mit der Aufgabe bringen kann.
Das man zwei elemente mtieinander vergleicht aus zwei verschiedenen Mengen scheint mir zu einfach.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lemma von Zorn: Antwort
Status: (Antwort) fertig Status 
Datum: 00:13 Mo 16.11.2009
Autor: felixf

Hallo!

> Zeigen Sie, mit Hilfe des Lemmas von Zorn, daß für zwei
> Mengen A,B stets |A| ≥ |B| oder |B| ≥ |A| gilt.
>  
> Guten Abend! Leider fehlt mir für diese Aufgabe ein
> richtiger Ansatz, da ich das Lemma von Zorn (Jede
> total-geordnete Menge hat ein maximales Element) nicht in
> Zusammenhang mit der Aufgabe bringen kann.
> Das man zwei elemente mtieinander vergleicht aus zwei
> verschiedenen Mengen scheint mir zu einfach.

Du musst ja zeigen, dass es entweder eine injektive Abbildung $A [mm] \to [/mm] B$ oder eine injektive Abbildung $B [mm] \to [/mm] A$ gibt.

Solche injektiven Abbildungen entsprechen passenden Teilmengen von $A [mm] \times [/mm] B$. Ueberleg dir welche Teilmengen dieses sind, und ob du diese Beziehung verallgemeinern kannst um eine partielle Ordnung auf solche (allgemeineren) Teilmengen von $A [mm] \times [/mm] B$ zu finden, die per Teilmenge geordnet sind und wo jede aufsteigende Kette eine obere Schranke hat (sprich: die Vereinigung einer aufsteigenden Kette ist auch wieder eine Menge mit dieser Eigenschaft).

Eine maximale Menge mit dieser Eigenschaft liefert dann entweder eine Injektiv $A [mm] \to [/mm] B$ oder eine Injektion $B [mm] \to [/mm] A$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de