www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Lim ausrechnen
Lim ausrechnen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lim ausrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Mi 04.06.2014
Autor: pc_doctor

Aufgabe
[mm] \limes_{x\rightarrow\infty} \wurzel{x^{2}+x-6} [/mm] - x


Hallo,
ich soll den Grenzwert ausrechnen , falls er existiert.

Angefangen habe ich so:

[mm] \limes_{x\rightarrow\infty} \wurzel{x^{2}+x-6} [/mm] - x

[mm] \limes_{x\rightarrow\infty} \wurzel{x^{2} (1+ \bruch{1}{x} - \bruch{6}{x^{2}})} [/mm] - x

[mm] \limes_{x\rightarrow\infty} [/mm] x [mm] \underbrace{\wurzel{1 + \bruch{1}{x} - \bruch{6}{x^{2}}}}_{=1} [/mm] - x

[mm] \limes_{x\rightarrow\infty} [/mm] x - x

Das ist jetzt unendlich minus unendlich , ist das jetzt  Null ? Die Differenz zweier bestimmter divergenter Folgen könnte doch alles mögliche sein.

Was schreibe ich jetzt am besten auf ?

Vielen Dank im Voraus.

        
Bezug
Lim ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 Mi 04.06.2014
Autor: Valerie20

Denke zunächst einmal an die dritte Binomische Formel und erweitere dann mit 1.

Bezug
                
Bezug
Lim ausrechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:24 Mi 04.06.2014
Autor: pc_doctor

Okay, vielen Dank. Melde mich dann wieder hier.

Bezug
        
Bezug
Lim ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Mi 04.06.2014
Autor: Richie1401

Hi,

> [mm]\limes_{x\rightarrow\infty} \wurzel{x^{2}+x-6}[/mm] - x
>  
> Hallo,
>  ich soll den Grenzwert ausrechnen , falls er existiert.
>  
> Angefangen habe ich so:
>  
> [mm]\limes_{x\rightarrow\infty} \wurzel{x^{2}+x-6}[/mm] - x
>  
> [mm]\limes_{x\rightarrow\infty} \wurzel{x^{2} (1+ \bruch{1}{x} - \bruch{6}{x^{2}})}[/mm]
> - x
>  
> [mm]\limes_{x\rightarrow\infty}[/mm] x [mm]\underbrace{\wurzel{1 + \bruch{1}{x} - \bruch{6}{x^{2}}}}_{=1}[/mm]
> - x
>
> [mm]\limes_{x\rightarrow\infty}[/mm] x - x
>  
> Das ist jetzt unendlich minus unendlich , ist das jetzt  
> Null ? Die Differenz zweier bestimmter divergenter Folgen
> könnte doch alles mögliche sein.

Beachte die Grenzwertsätze:

Gilt [mm] a_n\to{a} [/mm] und [mm] b_n\to{b}, [/mm] dann ist

   [mm] \lim_{n\to\infty}(a_n-b_n)=\lim_{n\to\infty}a_n-\lim_{n\to\infty}b_n [/mm]

Man kann also den Limes auf die einzelnen Folgen ausdehnen. Für divergente Folgen ist das aber nicht mehr möglich.

Am besten du schaust dir noch einmal an, was ein unbestimmter Ausdruck ist.


Wie du nun auf die Lösung kommst, hat man dir ja schon gesagt. Erweitere so, dass man die 3. binomische Formel anwenden kann.

>  
> Was schreibe ich jetzt am besten auf ?
>  
> Vielen Dank im Voraus.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de