www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Limes
Limes < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Mo 09.02.2009
Autor: waruna

Zeigen Sie: für alle k [mm] \in [/mm] N, z [mm] \in [/mm] C mit |z| > 1 gilt:

[mm] \lim_{n\rightarrow\infty}\bruch{n^{k}}{z^{n}}=0 [/mm]

Ich weiss, dass man binomischen Satz benutzen muss, aber wie genau, konnte ich nicht ausdenken.

Kleiner Hinweis wird bestimmt helfen :).  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Limes: Tipp
Status: (Antwort) fertig Status 
Datum: 00:24 Di 10.02.2009
Autor: Loddar

Hallo waruna!


Ersetze im Nenner $z \ := \ [mm] r*\left[\cos(\varphi)+i*\sin(\varphi)\right]$ [/mm] bzw. gemäß MBMoivre-Formel [mm] $z^n [/mm] \ = \ [mm] r^n*\left[\cos(n*\varphi)+i*\sin(n*\varphi)\right]$ [/mm] .

Anschließend den Bruch zerlegen ...


Gruß
Loddar


Bezug
                
Bezug
Limes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:48 Di 10.02.2009
Autor: waruna

Ich habe also sowas ausgedacht:

Ich werde zeigen, dass    

[tex]n^{k}/r^{n}[/tex] gegen 0 konvergieren, und weil diese Reste mit sin und cos konwergiert nicht (lim ex. nicht), ein Produnkt geht auch gegen 0.
Das kann man zeigen, wenn man nutzt: [tex]n^{k} = e^{klogn}[/tex].

Darf man so machen?


Bezug
                        
Bezug
Limes: vorrechnen!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:07 Di 10.02.2009
Autor: Loddar

Hallo waruna!


Da kann ich Dir gerade leider nicht ganz folgen ... bitte rechen das doch mal vor, wie Du das meinst.


Gruß
Loddar


Bezug
        
Bezug
Limes: Antwort
Status: (Antwort) fertig Status 
Datum: 09:59 Di 10.02.2009
Autor: fred97

Setze [mm] a_n [/mm] = [mm] \bruch{n^k}{z^n}. [/mm]

Dann:  [mm] \wurzel[n]{|a_n|} [/mm] = [mm] \bruch{(\wurzel[n]{n})^k}{|z|} [/mm] --> [mm] \bruch{1}{|z|} [/mm] <1

Nach dem Wurzelkriterium ist   [mm] \summe_{n=1}^{\infty}a_n [/mm]  konvergent, also ist [mm] (a_n) [/mm] eine Nullfolge.

FRED

Bezug
                
Bezug
Limes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:08 Di 10.02.2009
Autor: angela.h.b.

Moin,

das find' ich in seiner Einfachheit so richtig raffiniert.

Gruß v. Angela

Bezug
                        
Bezug
Limes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:16 Di 10.02.2009
Autor: fred97


> Moin,
>  
> das find' ich in seiner Einfachheit so richtig raffiniert.
>  
> Gruß v. Angela


Moin, moin

Danke

Gruß FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de