www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Limes - Umformung erlaubt?
Limes - Umformung erlaubt? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes - Umformung erlaubt?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 Do 28.11.2013
Autor: Ebri

Aufgabe
[mm] a_{n} [/mm] Folge mit [mm] \limes_{n\rightarrow\infty}a_{n} [/mm] = c > 0

[mm] \limes_{n\rightarrow\infty}(1+\bruch{a_{n}*x}{n})^{n} [/mm] = ... ?

Hallo!

Ich habe das Problem etwas abstrahiert. Ist folgende Umformung zulässig?

[mm] \limes_{n\rightarrow\infty}(1+\bruch{a_{n}*x}{n})^{n} [/mm] = [mm] \limes_{n\rightarrow\infty}(1+\bruch{c*x}{n})^{n} [/mm] = ...

Ich habe da so meine Zweifel. Versucht habe ich das Ganze auf die mir bekannten []Limes Rechenregeln zurückzuführen, hatte aber kein Erfolg.

Über einen Tipp oder Antwort wäre ich dankbar.

Gruß
Ebri



        
Bezug
Limes - Umformung erlaubt?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Do 28.11.2013
Autor: Gonozal_IX

Hiho,

> Ich habe da so meine Zweifel.

Zu recht!
Du kannst ja nicht einfach Teile der Folge stehen lassen und seperat berechnen.
Nach deiner Theorie könnte man ja auch so umformen:

$e = [mm] \lim_{n\to\infty} \left(1 + \bruch{1}{n}\right)^n [/mm] = [mm] \lim_{n\to\infty} \left(1 + \lim_{n\to\infty} \bruch{1}{n}\right)^n [/mm] = [mm] \lim_{n\to\infty} \left(1 \right)^n [/mm] = 1$

> Über einen Tipp oder Antwort wäre ich dankbar.

Schätze die Folge mit Hilfe von [mm] $c_n \in(c-\varepsilon,c+\varepsilon)$ [/mm] für ausreichend große n  ab und begründe das mit der [mm] $\varepsilon$-Definition [/mm] vom Grenzwert.

Gruß,
Gono.

Bezug
                
Bezug
Limes - Umformung erlaubt?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Do 28.11.2013
Autor: Ebri


> Hiho,
>  
> > Ich habe da so meine Zweifel.
>
> Zu recht!
>  Du kannst ja nicht einfach Teile der Folge stehen lassen
> und seperat berechnen.
>  Nach deiner Theorie könnte man ja auch so umformen:
>
> [mm]e = \lim_{n\to\infty} \left(1 + \bruch{1}{n}\right)^n = \lim_{n\to\infty} \left(1 + \lim_{n\to\infty} \bruch{1}{n}\right)^n = \lim_{n\to\infty} \left(1 \right)^n = 1[/mm]
>  
> > Über einen Tipp oder Antwort wäre ich dankbar.
>  
> Schätze die Folge mit Hilfe von [mm]c_n \in(c-\varepsilon,c+\varepsilon)[/mm]
> für ausreichend große n  ab und begründe das mit der
> [mm]\varepsilon[/mm]-Definition vom Grenzwert.
>  
> Gruß,
>  Gono.

Hallo Gono,

ich habe über deinen Tipp nachgedacht, aber so richtig ist der Funke noch nicht übergesprungen. Das man nicht zu Umformen kann ist mir jetzt klar.
Ich weiß:

[mm] \limes_{n\rightarrow\infty}a_{n} [/mm] = c  d.h. [mm] \forall \varepsilon>0 \; \exists N_a\in\mathbb{N} \; \forall [/mm] n [mm] \ge N_a: \;\left|a_n-c \right|<\varepsilon [/mm]

Setzen wir mal [mm] b_n:=(1+\bruch{a_{n}\cdot{}x}{n})^{n} [/mm]

Zeigen möchte ich [mm] \limes_{n\rightarrow\infty}b_n [/mm] = [mm] e^{cx} [/mm] (Das Stimmt doch, oder?)

Zu deinen Tipp: Die Folge mit [mm] c_n \in(c-\varepsilon,c+\varepsilon) [/mm] abzuschätzen. Wo genau kommt [mm] c_n [/mm] her?

In etwa so?
... [mm] (1+\bruch{(c-\varepsilon)\cdot{}x}{n})^{n} \le (1+\bruch{a_{n}\cdot{}x}{n})^{n} \le (1+\bruch{(c+\varepsilon)\cdot{}x}{n})^{n} [/mm] ...

Gruß
Ebri

Bezug
                        
Bezug
Limes - Umformung erlaubt?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Do 28.11.2013
Autor: fred97


> > Hiho,
>  >  
> > > Ich habe da so meine Zweifel.
> >
> > Zu recht!
>  >  Du kannst ja nicht einfach Teile der Folge stehen
> lassen
> > und seperat berechnen.
>  >  Nach deiner Theorie könnte man ja auch so umformen:
> >
> > [mm]e = \lim_{n\to\infty} \left(1 + \bruch{1}{n}\right)^n = \lim_{n\to\infty} \left(1 + \lim_{n\to\infty} \bruch{1}{n}\right)^n = \lim_{n\to\infty} \left(1 \right)^n = 1[/mm]
>  
> >  

> > > Über einen Tipp oder Antwort wäre ich dankbar.
>  >  
> > Schätze die Folge mit Hilfe von [mm]c_n \in(c-\varepsilon,c+\varepsilon)[/mm]
> > für ausreichend große n  ab und begründe das mit der
> > [mm]\varepsilon[/mm]-Definition vom Grenzwert.
>  >  
> > Gruß,
>  >  Gono.
>
> Hallo Gono,
>  
> ich habe über deinen Tipp nachgedacht, aber so richtig ist
> der Funke noch nicht übergesprungen. Das man nicht zu
> Umformen kann ist mir jetzt klar.
>  Ich weiß:
>  
> [mm]\limes_{n\rightarrow\infty}a_{n}[/mm] = c  d.h. [mm]\forall \varepsilon>0 \; \exists N_a\in\mathbb{N} \; \forall[/mm]
> n [mm]\ge N_a: \;\left|a_n-c \right|<\varepsilon[/mm]
>  
> Setzen wir mal [mm]b_n:=(1+\bruch{a_{n}\cdot{}x}{n})^{n}[/mm]
>  
> Zeigen möchte ich [mm]\limes_{n\rightarrow\infty}b_n[/mm] = [mm]e^{cx}[/mm]
> (Das Stimmt doch, oder?)
>  
> Zu deinen Tipp: Die Folge mit [mm]c_n \in(c-\varepsilon,c+\varepsilon)[/mm]
> abzuschätzen. Wo genau kommt [mm]c_n[/mm] her?

Da hat Gono sich verschrieben. Es ist [mm] c_n=a_n [/mm]

Du mußßt schon etwas präziser sein:

Ist [mm] \varepsilon [/mm] >0, so gibt es ein N [mm] \in \IN [/mm] mit:

   [mm]a_n \in(c-\varepsilon,c+\varepsilon)[/mm]  für alle n mit n>N.

>  
> In etwa so?
>  ... [mm](1+\bruch{(c-\varepsilon)\cdot{}x}{n})^{n} \le (1+\bruch{a_{n}\cdot{}x}{n})^{n} \le (1+\bruch{(c+\varepsilon)\cdot{}x}{n})^{n}[/mm]

Ja, also

(*) [mm](1+\bruch{(c-\varepsilon)\cdot{}x}{n})^{n} \le (1+\bruch{a_{n}\cdot{}x}{n})^{n} \le (1+\bruch{(c+\varepsilon)\cdot{}x}{n})^{n}[/mm] für alle n mit n>N.

Aber .....  auch hier solltest Du noch etwas spendieren, damit die obigen Ungleichungen wirklich richtig sind.

Überlege Dir, dass es ein [mm] N_1 [/mm] >N gibt mit:

[mm] 1+\bruch{(c-\varepsilon)\cdot{}x}{n} \ge [/mm] 0,

[mm] 1+\bruch{(c+\varepsilon)\cdot{}x}{n} \ge [/mm] 0

und

[mm] 1+\bruch{a_{n}\cdot{}x}{n} \ge [/mm] 0

für alle n> [mm] N_1 [/mm]

dann haben wir

(*) [mm](1+\bruch{(c-\varepsilon)\cdot{}x}{n})^{n} \le (1+\bruch{a_{n}\cdot{}x}{n})^{n} \le (1+\bruch{(c+\varepsilon)\cdot{}x}{n})^{n}[/mm] für alle n mit [mm] n>N_1. [/mm]


Damit ist die Folge [mm] ((1+\bruch{a_{n}\cdot{}x}{n})^{n}) [/mm] beschränkt.

Ist nun a ein Häufungswert dieser Folge , so folgt aus (*)

    [mm] e^{(c-\varepsilon)x} \le [/mm] a [mm] \le e^{(c+\varepsilon)x}. [/mm]

Nun lassen wir [mm] \varepsilon [/mm] gegen 0 gehen und bekommen:

  [mm] e^{cx}=a [/mm] für jeden Häufungswert a von [mm] ((1+\bruch{a_{n}\cdot{}x}{n})^{n}) [/mm]

Damit ist [mm] ((1+\bruch{a_{n}\cdot{}x}{n})^{n}) [/mm]  beschränkt und hat nur einen Häufungswert. Also ist [mm] ((1+\bruch{a_{n}\cdot{}x}{n})^{n}) [/mm] konvergent und hat den Grenzwert [mm] e^{cx} [/mm]

FRED

> ...
>  
> Gruß
>  Ebri


Bezug
                                
Bezug
Limes - Umformung erlaubt?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:59 Do 28.11.2013
Autor: Ebri

Hallo FRED, danke für die Erklärung. Ich gehe das jetzt in Ruhe durch und (versuche) die fehlenden Begründungen zu ergänzen. Dir noch einen schönen Abend.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de