www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Limes Maß
Limes Maß < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes Maß: Finde Folge nicht
Status: (Frage) beantwortet Status 
Datum: 09:41 Di 19.04.2011
Autor: schachuzipus

Aufgabe
Sei [mm]\Omega[/mm] abzählbar unendlich, [mm]\mu:\mathcal P(\Omega)\to[0,\infty][/mm] mit [mm]\mu(A)=0[/mm], falls [mm]A[/mm] endlich und [mm]\mu(A)=\infty[/mm] sonst [mm](A\subset\Omega)[/mm]

b) es gibt eine Folge [mm](A_n)_{n\in\IN}[/mm] mit [mm]A_n\uparrow \Omega[/mm] und [mm]\mu(A_n)=0[/mm]



Hallo zusammen,

in a) sollte man zeigen, dass [mm]\mu[/mm] additiv, aber nicht [mm]\sigma[/mm]-additiv ist, was nicht schwierig war.

In b) finde ich leider keine Folge mit Maß 0 (Folge von Nullmengen(?)), die aufsteigend gegen den Grundraum konvergiert ...

Kann bitte jemand schubsen?

Danke vorab!

Gruß

schachuzipus


        
Bezug
Limes Maß: Antwort
Status: (Antwort) fertig Status 
Datum: 10:29 Di 19.04.2011
Autor: fred97


> Sei [mm]\Omega[/mm] überabzählbar unendlich, [mm]\mu:\mathcal P(\Omega)\to[0,\infty][/mm]
> mit [mm]\mu(A)=0[/mm], falls [mm]A[/mm] endlich und [mm]\mu(A)=\infty[/mm] sonst
> [mm](A\subset\Omega)[/mm]
>  
> b) es gibt eine Folge [mm](A_n)_{n\in\IN}[/mm] mit [mm]A_n\uparrow \Omega[/mm]
> und [mm]\mu(A_n)=0[/mm]
>  
> Hallo zusammen,
>  
> in a) sollte man zeigen, dass [mm]\mu[/mm] additiv, aber nicht
> [mm]\sigma[/mm]-additiv ist, was nicht schwierig war.
>  
> In b) finde ich leider keine Folge mit Maß 0 (Folge von
> Nullmengen(?)), die aufsteigend gegen den Grundraum
> konvergiert ...
>  
> Kann bitte jemand schubsen?
>  
> Danke vorab!
>  
> Gruß
>  
> schachuzipus

Hallo schachuzipus,

vielleicht verstehe ich etwas falsch, aber ich denke, solch eine Folge [mm] (A_n) [/mm] kann es nicht geben.

Wenn  stets $ [mm] \mu(A_n)=0 [/mm] $ ist, so ist jedes  [mm] A_n [/mm] endlich. Dann ist aber [mm] \bigcup_{n=1}^{\infty}A_n [/mm] abzählbar, also [mm] \ne \Omega. [/mm]

Gruß FRED

>  


Bezug
                
Bezug
Limes Maß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:37 Di 19.04.2011
Autor: schachuzipus

Hallo Fred und danke für die Antwort,

ja, das war ein Vertipper ...

Es soll natürlich nicht überabzählbar unendlich heißen, sondern "nur" abzählbar unendlich ...

Hast du damit noch nen Tipp parat?

Ich editiere es direkt mal ...

Gruß

schachuzipus


Bezug
                        
Bezug
Limes Maß: Antwort
Status: (Antwort) fertig Status 
Datum: 10:40 Di 19.04.2011
Autor: fred97


> Hallo Fred und danke für die Antwort,
>  
> ja, das war ein Vertipper ...
>  
> Es soll natürlich nicht überabzählbar unendlich heißen,
> sondern "nur" abzählbar unendlich ...
>  
> Hast du damit noch nen Tipp parat?

Ja.  Sei [mm] $\Omega= \{w_1,w_2, ...\}$ [/mm]  und [mm] $A_n:= \{w_1,...,w_n\}$ [/mm]

FRED

>  
> Ich editiere es direkt mal ...
>  
> Gruß
>  
> schachuzipus
>  


Bezug
                                
Bezug
Limes Maß: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:47 Di 19.04.2011
Autor: schachuzipus

Hallo nochmal,


> > Hallo Fred und danke für die Antwort,
>  >  
> > ja, das war ein Vertipper ...
>  >  
> > Es soll natürlich nicht überabzählbar unendlich heißen,
> > sondern "nur" abzählbar unendlich ...
>  >  
> > Hast du damit noch nen Tipp parat?
>  
> Ja.  Sei [mm]\Omega= \{w_1,w_2, ...\}[/mm]  und [mm]A_n:= \{w_1,...,w_n\}[/mm]
>
> FRED


Bah, bin ich blind.

Das war ja nun keine sonderlich fern liegende Wahl [kopfschuettel]

Danke für das Öffnen der Augen.

Hast was gut ;-)

Gruß

schachuzipus


Bezug
                                        
Bezug
Limes Maß: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:57 Di 19.04.2011
Autor: fred97


> Hallo nochmal,
>  
>
> > > Hallo Fred und danke für die Antwort,
>  >  >  
> > > ja, das war ein Vertipper ...
>  >  >  
> > > Es soll natürlich nicht überabzählbar unendlich heißen,
> > > sondern "nur" abzählbar unendlich ...
>  >  >  
> > > Hast du damit noch nen Tipp parat?
>  >  
> > Ja.  Sei [mm]\Omega= \{w_1,w_2, ...\}[/mm]  und [mm]A_n:= \{w_1,...,w_n\}[/mm]
> >
> > FRED
>  
>
> Bah, bin ich blind.
>  
> Das war ja nun keine sonderlich fern liegende Wahl
> [kopfschuettel]
>  
> Danke für das Öffnen der Augen.
>  
> Hast was gut ;-)

So, was denn ? Ich hatte vor 12 Tagen Geburtstag !

Gruß FRED

>  
> Gruß
>  
> schachuzipus
>  


Bezug
                                                
Bezug
Limes Maß: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:09 Di 19.04.2011
Autor: schachuzipus

Hi Fred,



> > Hast was gut ;-)
>  
> So, was denn ? Ich hatte vor 12 Tagen Geburtstag !

[happybirthday]

Na, dann trällere ich doch schnell nachträglich ein Liedchen:

[ballon] "Happy Birthday to you ..." [ballon]

[pfeif]

Gruß

schachuzipus




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de