www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Limes und WKeit
Limes und WKeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes und WKeit: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 20:47 Mi 22.03.2023
Autor: Jellal

Hallo,

beim Beweis des strong law of large numbers habe ich mir folgende Frage gestellt:

Angenommen wir haben eine Folge von Zufallszahlen [mm] X_{n} [/mm] und wissen, dass [mm] \forall \epsilon>0 [/mm]
[mm] P(|X_{n}|\ge \epsilon) \le \bruch{C}{\epsilon^{4}n^{2}}, [/mm] mit C>0 fest.

Das heißt doch zwangsweise, dass [mm] \limes_{n\rightarrow\infty}P(|X_{n}|\ge \epsilon) [/mm] = 0.

Also auch [mm] \limes_{n\rightarrow\infty}P(|X_{n}| [/mm] < [mm] \epsilon) [/mm] = 1.

Dies gilt fuer alle [mm] \epsilon. [/mm]

Wie kann ich einsehen, dass das nicht das gleiche ist wie
[mm] P(\limes_{n\rightarrow\infty} |X_{n}|=0) [/mm] = 1?

Ich sehe da intuitiv keinen Unterschied...

vG.
Jellal

edit: Ich merke gerade, dass ich im Grunde genommen nach dem Unterschied zwischen dem starken und dem schwachen Gesetz großer Zahlen frage... vielleicht finde ich Erlaeuterungen dazu online.

edit 2:
Gute Erklaerungen sind hier zu finden:
[]https://stats.stackexchange.com/questions/2230/convergence-in-probability-vs-almost-sure-convergence.

Die Frage kann geschlossen werden.


        
Bezug
Limes und WKeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:06 Do 23.03.2023
Autor: Gonozal_IX

Hiho,

> edit: Ich merke gerade, dass ich im Grunde genommen nach
> dem Unterschied zwischen dem starken und dem schwachen
> Gesetz großer Zahlen frage... vielleicht finde ich
> Erlaeuterungen dazu online.

oder allgemeiner: Zwischen Konvergenz in Wahrscheinlichkeit und fast sicherer Konvergenz (hier gegen 0)

Und noch allgemeiner, wenn du nicht nur Wahrscheinlichkeitsmaße betrachten willst: []
Konvergenz dem Maße nach
und der []Konvergenz fast überall

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de