www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Lin Abbildungen
Lin Abbildungen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lin Abbildungen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 16:01 Di 01.12.2009
Autor: Fabian1986

Aufgabe
Welche der folgenden Abbildungen [mm] \alpha [/mm] : [mm] \IR^3 [/mm] --> [mm] \IR^2 [/mm] sind lineare Abbildungen?
a)
[mm] \alpha(x,y,z)=(2x+y,z) [/mm] für alle [mm] (x,y,z)x\in\IR^3 [/mm]
b)
[mm] \alpha(x,y,z)=(x+2y+3z,x+y+z) [/mm] für alle [mm] (x,y,z)x\in\IR^3 [/mm]

Hi,

diese Aufgabe versuche ich zu bearbeiten. Aber ich verstehe grad nur Bahnhof. Weiß nichtmal wie ich anfangen soll.

Ich soll ja beweisen, dass(laut unserem Skript):

[mm] \alpha(v_1+v_2)=\alpha(v_1)+\alpha(v_2) [/mm]

und

[mm] \alpha(b*v)=b*\alpha(v) [/mm]

Aber wie mache ich das?Würde ja meine bisherigen Versuche hier mit dranhängen aber ich hab keine....bin grad echt am verzweifeln.

        
Bezug
Lin Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Di 01.12.2009
Autor: Cassipaya

Hallo Fabian

Genau so :-)

Du hast ja die Abbildung gegeben. Jetzt musst du nur noch zeigen, dass die Addition zweier Elemente aus [mm] \IR^{3} [/mm] und die Multiplikation eines Körperelementes mit einem Element aus [mm] \IR^{3} [/mm] unter der Abbildung [mm] \alpha [/mm] die (Skript-)Voraussetzung erfüllt, sprich, dass "hinten" ein neues Element in [mm] \IR^{2} [/mm] herauskommt.

Liebe Grüsse

Cassiopaya

Bezug
                
Bezug
Lin Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Di 01.12.2009
Autor: Fabian1986

Ja nur mein Problem ist halt. Wie mach ich das?:) kannst du mir das vllt mal an einem kurzen Besipiel zeigen?

Bezug
                        
Bezug
Lin Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Di 01.12.2009
Autor: fred97

Für [mm] \alpha: [/mm]   ich schreibe f statt [mm] \alpha [/mm]

       $f((x,y,z)+(u,v,w)) = f(x+u,y+v,z+w) = (2(x+u)+(y+v), z+w)= ((2x+y)+(2u+v), z+w) = (2x+y,z)+(2u+v,w) = f(x,y,z)+f(u,v,w)$

Nun zeige mal selbst, dass

       $f(t(x,y,z)) = tf(x,y,z)$

ist

FRED  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de