Linaere Gleichung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:56 So 18.11.2007 | Autor: | FrankM |
Aufgabe | Betrachten Sie das Cauchy-Problem
[mm] yu_{x}-xu_{y}=0 [/mm] in [mm] \IR^{2} \backslash \{ 0 \} [/mm] und den Anfangsbedingungen u(x,0)=3x |
Hallo,
eigentlich ist die Lösung der Aufgabe ja recht einfach. Ich habe auch (glaube ich) eine Lösung
[mm] u(x,y)=\begin{cases} 3\sqrt{x^{2}+y^{2}}, & \mbox{für } x >0 \\ -3\sqrt{x^{2}+y^{2}} & \mbox{für } x<0 \end{cases}
[/mm]
gefunden. Meine Frage ist nun was, passiert für x=0 und [mm] y\not=0. [/mm] Da habe ich durch die AB keine Möglichkeit das Vorzeichen zu bestimmen. Tritt in diesen Punkten ein Problem auf, weil das Vektorfeld der Koeffizienten (y,-x) für x=0 tangential an der Geraden der AB ist?
Danke Frank
|
|
|
|
Hi,
> Betrachten Sie das Cauchy-Problem
> [mm]yu_{x}-xu_{y}=0[/mm] in [mm]\IR^{2} \backslash \{ 0 \}[/mm] und den
> Anfangsbedingungen u(x,0)=3x
> Hallo,
>
> eigentlich ist die Lösung der Aufgabe ja recht einfach. Ich
> habe auch (glaube ich) eine Lösung
>
> [mm]u(x,y)=\begin{cases} 3\sqrt{x^{2}+y^{2}}, & \mbox{für } x >0 \\ -3\sqrt{x^{2}+y^{2}} & \mbox{für } x<0 \end{cases}[/mm]
>
sieht gut aus.
> gefunden. Meine Frage ist nun was, passiert für x=0 und
> [mm]y\not=0.[/mm] Da habe ich durch die AB keine Möglichkeit das
> Vorzeichen zu bestimmen. Tritt in diesen Punkten ein
> Problem auf, weil das Vektorfeld der Koeffizienten (y,-x)
> für x=0 tangential an der Geraden der AB ist?
>
warum sollte ein problem auftreten?
die loesung ist doch vollstaendig durch die anfangswerte auf der x-achse vorgegeben. von dort wird sie in richtung der charakteristiken (also hier kreisfoermig) auf die komplette ebene 'transportiert'.
solange die charakteristiken nicht tangential an der x-achse werden, gibt es kein problem. Und in dieser aufgabe schneiden die char.'n die x-achse sogar in einem konstant rechten winkel.
gruss
matthias
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:45 So 18.11.2007 | Autor: | FrankM |
Hallo,
aber was ist den zum Beispiel der Wert von u an der Stelle (0,3), gilt da
u(0,3)=9 oder u(0,3)=-9. Wenn man Lösung richtig ist, tritt auf der Achse ja eine Sprung auf, so dass die Fktn. nicht [mm] C^1 [/mm] ist.
Gruß
Frank
|
|
|
|
|
> Hallo,
>
> aber was ist den zum Beispiel der Wert von u an der Stelle
> (0,3), gilt da
> u(0,3)=9 oder u(0,3)=-9. Wenn man Lösung richtig ist,
> tritt auf der Achse ja eine Sprung auf, so dass die Fktn.
> nicht [mm]C^1[/mm] ist.
ok, jetzt verstehe ich dein problem. ich denke, deine loesung ist richtig, dh. du hast auf der y-achse eine schockwelle. wie du vermutlich weisst, ist das fuer hyperbolische erhaltungsgleichungen eher die regel als die ausnahme. selbst glatte anfangswerte bilden oft unstetigkeiten (-> schocks) heraus.
die loesung ist also nicht [mm] $C^1$, [/mm] richtig.
>
> Gruß
> Frank
|
|
|
|