www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - LineAre bzw id Abbildung
LineAre bzw id Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LineAre bzw id Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:21 Sa 14.10.2017
Autor: thunderfarmer

Aufgabe
Gegeben seien die basen B( [mm] \vektor{1 \\ -1} \vektor{-2 \\ 1}) [/mm] und C( [mm] \vektor{0 \\ 2} [/mm] , [mm] \vektor{1 \\ 7} [/mm] .
Sei id: R2 -> R2 die identische Abbildung, also id(v) = v. Bestimmen Sie die abbildungsmatrizen Sid(B,C) und Sid(C,B) und berechnen Sie deren Produkt.


Kenn mich leider garnicht aus. Versteh beim Skript nur Bahnhof und kann die Vorlesung leider nicht besuchen da ich da arbeiten muss. Kann mir jemand das Beispiel erklären? Mir ist klar dass dieses Forum nicht dazu da ist, ein Beispiel zu posten und dann die Lösung zu erhalten. Hab aber momentan keine andere Möglichkeit.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
LineAre bzw id Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:16 Sa 14.10.2017
Autor: angela.h.b.


> Gegeben seien die basen B( [mm]\vektor{1 \\ -1} \vektor{-2 \\ 1})[/mm]
> und C( [mm]\vektor{0 \\ 2}[/mm] , [mm]\vektor{1 \\ 7}[/mm] .
> Sei id: R2 -> R2 die identische Abbildung, also id(v) = v.
> Bestimmen Sie die abbildungsmatrizen Sid(B,C) und Sid(C,B)
> und berechnen Sie deren Produkt.

Hallo,

[mm] S_{id}(B,C) [/mm] ist die Matrix, welche Vektoren, die in Koordinaten bzgl. B gegeben sind, in solche bzgl. C umwandelt.

In den Spalten dieser Matix stehen die Basisvektoren von B in Koodinaten bzgl C.

Die erste Spalte bekommst Du so:

[mm] \vektor{1\\0}_{B}=\vektor{1\\-1}=...*\vektor{0 \\ 2}+...*\vektor{1 \\ 7}=\vektor{\\}_C. [/mm]

Rechnen ergibt

[mm] \vektor{1\\0}_{B}=\vektor{1\\-1}=-4*\vektor{0 \\ 2}+1*\vektor{1 \\ 7}=\vektor{-4\\1}_C, [/mm]

und damit kennst Du die erste Spalte der gesuchten Matrix.

Auf diese Weise kannst Du die komplette Aufgabe lösen.

Natürlich gäbe es noch andere Wege, aber in Anbetracht der geschilderten Situation lasse ich es mal vorerst hiermit bewenden.

LG Angela

Bezug
        
Bezug
LineAre bzw id Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:40 Sa 14.10.2017
Autor: fred97


> Gegeben seien die basen B( [mm]\vektor{1 \\ -1} \vektor{-2 \\ 1})[/mm]
> und C( [mm]\vektor{0 \\ 2}[/mm] , [mm]\vektor{1 \\ 7}[/mm] .
>  Sei id: R2 -> R2 die identische Abbildung, also id(v) = v.

> Bestimmen Sie die abbildungsmatrizen Sid(B,C) und Sid(C,B)
> und berechnen Sie deren Produkt.
>  
> Kenn mich leider garnicht aus. Versteh beim Skript nur
> Bahnhof und kann die Vorlesung leider nicht besuchen da ich
> da arbeiten muss. Kann mir jemand das Beispiel erklären?


Hm,....., das ist merkwürdig!

Am vergangenen Mittwoch habe ich Dir eine simple Anleitung gegeben,

wie  man eine AbbildungsMatrix bastelt .




> Mir ist klar dass dieses Forum nicht dazu da ist, ein
> Beispiel zu posten und dann die Lösung zu erhalten. Hab
> aber momentan keine andere Möglichkeit.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de