www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Linear,injektiv,surjektiv
Linear,injektiv,surjektiv < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linear,injektiv,surjektiv: Was ist da falsch?
Status: (Frage) beantwortet Status 
Datum: 21:27 Fr 11.03.2005
Autor: Moe007

Hallo,
ich hab versucht, diese Aufgabe zu lösen. Zum Teil ist die Lösung richtig, aber nicht vollständig. Ich hoffe, es kann mir jemand weiter helfen.

Aufgabe:

Sei K ein Körper und sei V =  [mm] K^{ \IN} [/mm] der übliche Vektorraum. Weiter sei  [mm] \gamma: \IN \to \IN [/mm] eine Abbildung. Wir definieren H : V  [mm] \to [/mm] V durch h(f) = f  [mm] \circ \gamma [/mm] für f [mm] \in [/mm] V.
Zu zeigen:

a) h ist linear
b) h ist genau dann injektiv, wenn [mm] \gamma [/mm] surjektiv ist.
c) \ gamma ist genau dann injektiv, wenn h surjektiv ist.

zu a) Z.Z: h(f+g) = h(f) (x) + h(g) (x)
Beweis: h(f+g) (x) = ((f+g)  [mm] \circ) [/mm] (x) = (f+g) [mm] (\gamma(x)) [/mm] = [mm] f(\gamma(x)) [/mm] + [mm] g(\gamma(x)) [/mm] = f  [mm] \circ \gamma(x) [/mm] + g  [mm] \circ \gamma(x) [/mm] = h(f)(x) + h(g)(x)

Z.Z.: h( [mm] \alpha [/mm] f) (x) =  [mm] \alpha [/mm] h (f) (x)
         h( [mm] \alpha [/mm] f) (x) = (( [mm] \alpha [/mm] f)  [mm] \circ \gamma) [/mm] (x) = [mm] (\alpha [/mm] f) ( [mm] \gamma(x)) [/mm] = [mm] \alpha (f(\gamma(x))) [/mm] = [mm] \alpha [/mm] (f  [mm] \circ \gamma(x)) [/mm] = [mm] \alpha [/mm] h(f) (x) für alle x, also h(f+g) = h(f) + h(g), [mm] h(\alpha [/mm] f) = [mm] \alpha [/mm] h(f)

b) h ist injektiv  [mm] \equiv \forall [/mm] x,y [mm] \in [/mm] V: (h(x) = h(y) [mm] \to [/mm] x=y)  [mm] \equiv \forall [/mm] x,y [mm] \in [/mm] V: (h(x) - h(y) = 0 [mm] \to [/mm] x-y = 0 ) [mm] \equiv [/mm] (da h linear) [mm] \forall \forall [/mm] x,y [mm] \in [/mm] V: (h(x-y) = 0 [mm] \to [/mm] x-y = 0) [mm] \equiv \forall [/mm] f [mm] \in [/mm] V ( h(f) = 0 [mm] \to [/mm] f=0) [mm] \equiv \forall f\in [/mm] V (f  [mm] \circ \gamma [/mm] = 0 [mm] \to [/mm] f=0) [mm] \equiv \gamma [/mm] ist surjektiv

Hier stimmt etwas nicht, auf jeden fall hab ich da keine volle Punktzahl auf die b) bekommen. Wo liegt da der Fehler??

c) [mm] \gamma [/mm] ist injektiv
    Gelte [mm] \gamma(x) [/mm] = [mm] \gamma(y) [/mm]
    Z.Z.: x =y
     [mm] \gdw [/mm] f [mm] \circ \gamma(x) [/mm] = f [mm] \circ \gamma(y) [/mm]
     [mm] \gdw [/mm] h(f) (x) = h(f)(y)
     [mm] \gdw [/mm] h(f(x)) = h(f(y))
  Da h surjektiv, f(x) = f(y) [mm] \gdw [/mm] x=y

Da hab ich 0 Punkte bekommen. Ich hoffe, es kann mir bitte jemand erklären, was ich da falsch gemacht habe. Unser Korrektor schreibt nie hin, was falsch ist.

Danke, Moe 007

        
Bezug
Linear,injektiv,surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Fr 11.03.2005
Autor: Stefan

Hallo!

Naja, dein Tutor hat leider völlig recht. Ehrlich gesagt, hätte ich sogar für die b) und c) jeweils 0 Punkte gegeben, weil du die Begriffe "injektiv" und "surjektiv" zum Teil durcheinanderwirfst.

Aber ich will nicht kritisieren, sondern helfen. :-)

Also rechne ich dir die b) einmal vor, dann bekommst du die c) vielleicht selber hin.

1) Wir setzen voraus, dass $h$ injektiv ist und wollen daraus schließen, dass [mm] $\gamma$ [/mm] surjektiv ist.

Angenommen, [mm] $\gamma$ [/mm] wäre nicht surjektiv. Dann gäbe es ein $n [mm] \in \IN$ [/mm] mit

[mm] $\gamma(m) \ne [/mm] n$  für alle [mm] $m\in \IN$, [/mm]

also $n [mm] \notin Bild(\gamma)$- [/mm]

Definiere nun für [mm] $k_1,\,k_2 \in \K$, $k_1 \ne k_2$ [/mm] zwei Funktionen [mm] $f_1:\IN \to [/mm] K$, [mm] $f_2:\IN \to [/mm] K$ wie folgt:

[mm] $f_1(n) [/mm] = [mm] k_1$ [/mm]
[mm] $f_2(n)=k_2$ [/mm]
[mm] $f_1(m)=f_2(m)=1 \in [/mm] K$ für alle $m [mm] \in \IN \setminus\{n\}$. [/mm]

Dann gilt: [mm] $f_1 \ne f_2$, [/mm] aber:

[mm] $h(f_1) [/mm] = [mm] f_1 \circ \gamma [/mm] = [mm] f_2 \circ \gamma [/mm] = [mm] h(f_2)$, [/mm]

wegen $n [mm] \notin Bild(\gamma)$. [/mm] Die wäre aber ein Widerspruch zur Injektivität von $h$.

2) Wir setzen voraus, dass [mm] $\gamma$ [/mm] surjektiv ist und wollen zeigen, dass $h$ injektiv ist.

Es seien [mm] $f_1,f_2 \in K^{\IN}$ [/mm] mit [mm] $f_1 \ne f_2$. [/mm] Dann gibt es ein $n [mm] \in \IN$ [/mm] mit

[mm] $f_1(n) \ne f_2(n)$. [/mm]

Da [mm] $\gamma$ [/mm] surjektiv ist, gibt es ein [mm] $m\in \IN$ [/mm] mit [mm] $\gamma(m)=n$. [/mm]

Nun folgt:

[mm] $[h(f_1)](m) =(f_1 \circ \gamma)(m) [/mm] = [mm] f_1(n) \ne f_2(n) [/mm] = [mm] (f_2 \circ \gamma)(m) [/mm] = [mm] [h(f_2)](m)$, [/mm]

also:

[mm] $h(f_1) \ne h(f_2)$. [/mm]

Dies zeigt, dass $h$ injektiv ist.

Also, es war zwar einfach, aber bei weitem nicht so trivial, wie du es zeigen wolltest. ;-)

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de