www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Lineare Abbildung
Lineare Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:13 Sa 09.06.2007
Autor: Helfemich

Aufgabe
Untersuchen Sie anhand der Definition, ob die Abbildungen linear ist.
f: [mm] R^R [/mm] --> [mm] R^R, [/mm] f (g) := g', wobei für die Funktion
g: R--> R die Funktion g':R --> R
definiert ist durch g'(x) := gvon(1 - x).

g' ist nicht die Ableitung!
Definition ist:
f(v+w)= f(v)+f(w)
[mm] f(\lambda\*v)= \lambda \* [/mm] f(v)

Kann mir jemand eine Idee geben wie ich anfangen soll? bzw. den Rechenansatz?
Vielen Dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt




        
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Sa 09.06.2007
Autor: Somebody

Ich rechne Dir mal den ersten Teil der Linearität vor: der Trick ist, dass Du die Funktion [mm]f(v+w)[/mm] auf ein konkretes (aber an sich beliebiges) Argument [mm]x[/mm] anwenden musst, um die Definition von [mm]': g\mapsto g'[/mm] bei der Umformung überhaupt benutzen zu können:
[mm]f(v+w)(x) = (v+w)'(x)= (v+w)(1-x) = v(1-x)+w(1-x) = v'(x)+w'(x) = f(v)(x)+f(w)(x)[/mm]

Da wir dies für beliebiges [mm]x[/mm] gezeigt haben, gilt also
[mm]f(v+w) &= f(v)+f(w)[/mm]

Nun versuch's selbst mit dem zweiten Teil: vom Durchspielenmüssen der Definition von [mm]':g\mapsto g'[/mm], vorwärts und rückwärts, einfach nicht verwirren lassen...

Bezug
                
Bezug
Lineare Abbildung: Mein Versuch
Status: (Frage) beantwortet Status 
Datum: 15:51 Sa 09.06.2007
Autor: Helfemich

g( [mm] \lambda [/mm] v)(x) = [mm] (\lambda [/mm] v)'(x)= [mm] (\lambda [/mm] v)(1-x) = [mm] \lambda [/mm] v(1-x)= [mm] \lambda [/mm] v'(x)= [mm] \lambda [/mm] g(v)(x)

so?

Bezug
                        
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Sa 09.06.2007
Autor: Somebody

Nee, nicht genau so, aber ungefähr (ungefähr ist aber in der Mathematik leider nicht genau genug). Du musst Dir klarmachen, dass der Funktionsname [mm]g[/mm] nur benutzt wurde, um die auf Funktionen operierende Abbildung [mm]f: g\mapsto g'[/mm] überhaupt definieren zu können.

Du willst zeigen, dass die Funktion [mm]f[/mm] linear ist. Dass also insbesondere [mm]f(\lambda v)=\lambda f(v)[/mm] für alle Funktionen [mm]v:\IR\rightarrow \IR[/mm] gilt. Sei wieder [mm]x[/mm] beliebig (wir wollen ja zeigen, dass zwei Funktionen gleich sind, nämlich die beiden Funktionen [mm] f(\lambda v), \lambda f(v):\IR\mapsto \IR[/mm]; sie sind es genau dann, wenn sie für alle Argumente [mm]x[/mm] denselben Wert liefern):
[mm]f(\lambda v)(x) = (\lambda v)'(x) = (\lambda v)(1-x)= \lambda \big(v(1-x)\big) = \lambda \big(v'(x)\big)=\lambda \big(f(v)(x)\big) = (\lambda f(v))(x)[/mm]


Ich muss aber zugeben, das an diesen Umformungen so wenig Substanz ist, dass einem nach erledigter Umformung leicht ein schales Gefühl zurückbleiben kann...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de