www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Lineare Abbildung und Basis
Lineare Abbildung und Basis < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung und Basis: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 20:45 Mo 13.03.2023
Autor: DeePi

Aufgabe
Sei L : [mm] \IR^2 [/mm] → [mm] \IR^2 [/mm] definiert durch L((2, 19)) = (1, −1) und L((307, 2) = (1, 1). Kann L eine lineare Abbildung sein? Überprüfen Sie, ob eine Basis B existiert, sodass die darstellende Matrix von L bezüglich B folgendermaßen aussieht:

0 0
1 0


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: Wie ist hier die Vorgehensweise bei solchen Bspen?

        
Bezug
Lineare Abbildung und Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 07:33 Di 14.03.2023
Autor: statler

Guten Morgen!

> Sei L : [mm]R^2[/mm] → [mm]R^2[/mm] definiert durch L((2, 19)) = (1, −1)
> und L((307, 2) = (1, 1). Kann L eine lineare Abbildung
> sein? Überprüfen Sie, ob eine Basis B existiert, sodass
> die darstellende Matrix von L bezüglich B folgendermaßen
> aussieht:
>  
> 0 0
>  1 0
> Wie ist hier die Vorgehensweise bei solchen Bspen?

Das hängt stark vom Vorwissen ab. Lineare Algebra hat einen engen Zusammenhang mit dem Lösen von linearen Gleichungssystemen. Also wäre mein Ansatz, mit Hilfe eines Gleichungssystems zu prüfen, ob es eine 2x2-Matrix gibt, die L in der kanonischen Basis darstellt.
Und im 2. Schritt könnte man ebenso prüfen, ob es eine andere Basis gibt, in der L in der vorgegebenen Matrix dargestellt wird.
Wenn man das so 'zu Fuß' macht, ist das im Grunde Mittelstufenwissen.
Wenn man Erfahrung hat, sind die Antworten auch ohne Rechnung klar: a) ja und b) nein.
Gruß Dieter


Bezug
        
Bezug
Lineare Abbildung und Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 09:19 Di 14.03.2023
Autor: fred97

Wenn ich lese

"Sei $ L :  [mm] R^2 \to R^2 [/mm] $ definiert durch L((2, 19)) = (1, −1) und L((307, 2) = (1, 1)"

bin ich schon sauer auf den Aufgabensteller. Warum ?

Darum: es soll doch $L$ auf ganz $ [mm] \IR^2$ [/mm] definiert sein. Der Aufgabensteller definiert $L$ aber nur in den Punkten (2,19) und (307,2).

Dann wird gefragt: "Kann L eine lineare Abbildung sein?". Diese Frage ist völlig unsinnig !

Die Frage sollte wohl so lauten:

"Kann durch $ L((2, 19)) = (1, -1)$ und $L((307, 2) = (1, 1)$ eine lineare (!) Abbildung $L : [mm] \IR^2 \to \IR^2$ [/mm] definiert werden ?"

Antwort: ja.

Zeige zunächst, dass [mm] $\{(2,19),(307,2)\}$ [/mm] eine Basis des [mm] \IR^2 [/mm] ist.
Ist Dir nun klar, wie $L$ auf $ [mm] \IR^2$ [/mm] zu definieren ist ?

Zur zweiten Frage: $L$ ist bijetiv (warum ?).

Die Matrix [mm] \pmat{ 0 & 0 \\ 1 & 0 } [/mm] ist nicht invertierbar.

Wie lautet nun die Antwort auf die zweite Frage ?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de