www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Lineare Abbildungen
Lineare Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildungen: Aufgabe 1.4
Status: (Frage) beantwortet Status 
Datum: 20:20 Sa 06.05.2006
Autor: Ben2007

Aufgabe
Welche der folgenden Abbildungen sind linear:

[mm] \IR4 [/mm] -> [mm] \IR4 [/mm]   (x,y,w,z) -> (3x+y/6,4z-2y,z,w)

Ich würde es gerne mit dem gaussischen Verfahren lösen....kann ich das machen?
und kann ich dann skalare beliebig wählen, dass ich spter das ergebnis bekomme?

        
Bezug
Lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Sa 06.05.2006
Autor: DaMenge

Hallo,

also mit Gauß löst man normaler Weise Gleichungssysteme bzw. wandelt entspr. Matrizen in obere Dreiecksgestalt u.ä.

Hier weißt du jedoch noch gar nicht, ob du die Abbildung als Matrix schreiben kannst, denn genau das ist die Aufgabe.
(Jede lineare Abbildung ist nach Wahl von Basen eindeutig als Matrix darstellbar und umgekehrt !)

Also was du konkret zeigen musst:

sei [mm]f: \IR4[/mm] -> [mm]\IR4[/mm]   f(x,y,w,z)=(3x+y/6,4z-2y,z,w)

Dann musst du zeigen, dass gilt:
[mm] $f(\vektor{x\\y\\w\\z}+\vektor{x'\\y'\\w'\\z'})=f(\vektor{x\\y\\w\\z})+f(\vektor{x'\\y'\\w'\\z'})$ [/mm]
und:
[mm] $f(\lambda *\vektor{x\\y\\w\\z})=\lambda [/mm] * [mm] f(\vektor{x\\y\\w\\z})$ [/mm] für beliebiges [mm] $\lambda\in\IR$ [/mm]

wenn beides gilt, ist die Abbildung f linear

viele Grüße
DaMenge

Bezug
                
Bezug
Lineare Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:19 Sa 06.05.2006
Autor: Ben2007

okay danke!
Das verstehe ich soweit, aber ich verstehe nicht, wie ich auf die Zahlen komme, also sprich 3x y/6 .... :(

Bezug
                        
Bezug
Lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 Sa 06.05.2006
Autor: Bastiane

Hallo!

> okay danke!
>  Das verstehe ich soweit, aber ich verstehe nicht, wie ich
> auf die Zahlen komme, also sprich 3x y/6 .... :(

Also, du hast gegeben: f(x,y,w,z)=(3x+y/6,4z-2y,z,w) (wie auch immer das zu lesen sein mag - ist in der ersten Komponente der Zähler 3x+y oder nur y? Benutze doch bitte unseren Formeleditor!)

Nimmst du nun die beiden Vektoren [mm] \vektor{x\\y\\w\\z} [/mm] und [mm] \vektor{x'\\y'\\w'\\z'} [/mm] so ergibt sich:

[mm] f(\vektor{x\\y\\w\\z}+\vektor{x'\\y'\\w'\\z'})=f(\vektor{x+x'\\y+y'\\w+w'\\z+z'})=\vektor{3(x+x')+(y+y')/6\\4(z+z')-2(y+y')\\z+z'\\w+w'} [/mm]

und

[mm] f(\vektor{x\\y\\w\\z})+f(\vektor{x'\\y'\\w'\\z'})=\vektor{3x+y/6\\4z-2y\\z\\w}+\vektor{3x'+y'/6\\4z'-2y'\\z'\\w'}=\vektor{3x+y/6+3x'+y'/6\\4z-2y+4z'-2y'\\z+z'\\w+w'} [/mm]

Auf den ersten Blick sieht mir das schwer gleich aus. Hoffentlich habe ich mich nirgendwo vertippt, aber das Prinzip dürfte klar sein, oder?

Viele Grüße
Bastiane
[cap]


Bezug
                                
Bezug
Lineare Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:42 Sa 06.05.2006
Autor: Ben2007

Ah danke...ja jetz habe ich es verstanden.... mit dem "y/6" weiß ich elbst net was es heißt, weil es auch so da steht... aber danke, jetz hab ich es verstanden...
danke für die mühe - an einem samstag abend - aber das thema mag und kann ich nicht!

DANKE :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de