www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Lineare Abbildungen
Lineare Abbildungen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildungen: Bild(f), Kern(f)
Status: (Frage) beantwortet Status 
Datum: 18:24 Do 28.06.2007
Autor: vohigu

Aufgabe
Ich habe eine frage bezüglich Bild(f) und Kern(f) generell.

Kann mir jemand genau sagen wie ich Bild(f) und Kern(f) einer linearen Abbildung berechne?

        
Bezug
Lineare Abbildungen: Definitionen.
Status: (Antwort) fertig Status 
Datum: 18:49 Do 28.06.2007
Autor: kochmn

Servus Marius,

das Bild einer linearen Abbildung A
erhältst Du, indem Du Dir einen Satz Basisvektoren Deiner
Urmenge schnappst, sie durch A schickst und Dir den Aufspann
des Ergebnisses anschaust.

Der Kern der Matrix A (englisch: nullspace)
ist die Menge aller Vektoren der Urmenge, die von A auf das
0-Element der Zielmenge geschickt werden.

Um also zum Beispiel den Kern von

[mm] A:=\pmat{ 1 & 2 & 2\\ 3 & 4 & 4} [/mm]

zu bestimmen suchst Du alle Lösungen des LGS

[mm] \pmat{ 1 & 2 & 2\\ 3 & 4 & 4} \vektor{x \\ y\\ z} [/mm] = [mm] \vektor{0 \\ 0 \\ 0} [/mm]

Nochmal die Definitionen:
* Der Kern der Abbildung
    A: U [mm] \to [/mm] B
  ist Teilmenge von U:
    [mm] ker(A):=\{x\in U | A(x)=0 \} [/mm]
* Das Bild ist Teilmenge von B:
    [mm] bild(A):=\{y\in B | \exists x\in U : A(x)=y \} [/mm]

Liebe Grüße
  Markus-Hermann.


Bezug
        
Bezug
Lineare Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Do 28.06.2007
Autor: makw

Also. Sei A eine Matrix der linearen Abb. f.  Dann nimmst Du ein y aus deiner Definitionmenge und setzt ein Ay=b. Dann nach y ausrechnen und dann hast du die Basis fuer das Bild. Schreibe dann das Ergebnis in Linearkombination auf und schon bist Du fertig.
Die gleiche Methode nur mit b=0 ergibt dir die Basis des Kerns.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de