www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Lineare Abhängigkeit
Lineare Abhängigkeit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Fr 25.11.2005
Autor: Sidonie

Hallo! Ich habe Probs bei folgender Aufgabe: V sei ein Vektorraum über  [mm] \IQ. [/mm] Seien w,x,y,z,  [mm] \in [/mm] V.
(a) Zeigen Sie: Die Vektoren v1= w+x+y+z , v2= 2w+2x+y-z , v3= w+x+3y-z , v4= -x+y-z , v5= w-y+x sind linear abhängig.

Also ich weiß ja, dass hier gilt, dass  [mm] \alpha_{1}v1+ \alpha_{2}v2+ \alpha_{3}v3+ \alpha_{4}v4+\alpha_{5}v5= [/mm] 0
mit [mm] \alpha_{i} \not= [/mm] 0 für mindestens ein i.
Aber wie zeig ich das hier dann genau???

(b) Unter welcher Bedingung an w,x,y,z sind schon v1,..,v4 linear abhängig?

Hier fällt mir nur als Ansatz ein, dass w,x,y,z, linear abhängig sein müssten, wenn v1,...,v4 das sein sollen. Aber wie ich das durch ne Rechnung zeige, ist mir ein Rätsel.

Freue mich über jede Hilfe und bin sehr dankbar dafür!
LG Sidonie

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Fr 25.11.2005
Autor: angela.h.b.


> Hallo!

Hallo!

Ich habe Probs bei folgender Aufgabe: V sei ein

> Vektorraum über  [mm]\IQ.[/mm] Seien w,x,y,z,  [mm]\in[/mm] V.
>  (a) Zeigen Sie: Die Vektoren v1= w+x+y+z , v2= 2w+2x+y-z ,
> v3= w+x+3y-z , v4= -x+y-z , v5= w-y+x sind linear
> abhängig.

>  
> Also ich weiß ja, dass hier gilt, dass  [mm]\alpha_{1}v1+ \alpha_{2}v2+ \alpha_{3}v3+ \alpha_{4}v4+\alpha_{5}v5=[/mm]
> 0
>  mit [mm]\alpha_{i} \not=[/mm] 0 für mindestens ein i.

Du meinst, daß Du das zeigen mußt für lineare Abhängigkeit.

(Oder hast Du Dir das schon ausgerechnet? Dann müßtest Du nur diese Linearkombination aufschreiben und wärest fertig.)

Man muß hier aber gar nichts rechnen. Es sind vier Vektoren gegeben. Der von ihnen aufgespannte Raum hat höchstens die Dimension 4. Die fünf [mm] v_i [/mm] sind Elemente dieses Raumes und somit linear abhängig. Denn in diesem Raum können nur jeweils
höchstens vier Vektoren linear unabhängig sein.

>  
> (b) Unter welcher Bedingung an w,x,y,z sind schon v1,..,v4
> linear abhängig?
>  
> Hier fällt mir nur als Ansatz ein, dass w,x,y,z, linear
> abhängig sein müssten, wenn v1,...,v4 das sein sollen. Aber
> wie ich das durch ne Rechnung zeige, ist mir ein Rätsel.

Du könntest zeigen:

wenn w,x,y,z lin. unabh. ==> [mm] v_1,v_2,v_3,v_4 [/mm] sind linear unabhängig.

Dies ist gleichbedeutend mit

[mm] v_i [/mm] linear abh. ==>  w,x,y,z linear abhängig.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de