www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abiturvorbereitung" - Lineare Algebra
Lineare Algebra < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Di 28.04.2009
Autor: daniel_90

Aufgabe
Bei einer Abbildung [mm] \alpha [/mm] : [mm] \vec{x'} [/mm] = M * [mm] \vec{x} [/mm] + [mm] \vec{v}, [/mm] wobei M eine 2x2-Matrix ist, wird A(0|0) auf A'(4|-2) abgebildet und die Gerade g: y = 2x - 5 ist Fixpunktgerade, d.h. jeder Punkt von g wird durch [mm] \alpha [/mm] auf sich selbst abgebildet.

b) Berechnen Sie das Bild eines beliebigen Punktes P(u|v).
Zeigen Sie, dass die Strecke [mm] \overline{PP'} [/mm] senkrecht auf der Geraden g steht.
Deuten Sie dieses Ergebnis geometrisch.
Zur Kontrolle: [mm] \overrightarrow{PP'} [/mm] = [mm] \vektor{-1,6u + 0,8v + 4\\ 0,8u - 0,4v - 2} [/mm]

Hallo, Teilaufgabe a habe ich schon gelöst und habe dieses Ergebnis:
[mm] \alpha [/mm] : [mm] \vec{x'} [/mm] = [mm] \pmat{ -0,6 & 0,8 \\ 0,8 & 0,6 } [/mm] * [mm] \vec{x} [/mm] + [mm] \vektor{4 \\ -2} [/mm]

Für [mm] \vec{p} [/mm] habe ich [mm] \vektor{1 \\ 2} [/mm] gewählt und habe [mm] \vec{p'} [/mm] = [mm] \vektor{5 \\ 0} [/mm] ausgrechnet. Dadurch ergibt sich für [mm] \overrightarrow{PP'} [/mm] = [mm] \vektor{4 \\ -2}. [/mm]
Meine beiden Fragen lauten, wie ich zeigen soll, dass die Strecke senkrecht auf der Geraden g steht. Habe überlegt [mm] \overrightarrow{PP'} [/mm] in Koordinatenform zu schreiben und dann [mm] m_{1} [/mm] * [mm] m_{2} [/mm] = -1 zu rechnen. Bin mir aber nicht sicher, ob man das so machen soll, könnt ihr mir da Hilfestellung geben?
Außerdem weiß ich nicht genau, wie man ein Ergebnis geometrisch deuten soll bzw. inwiefern ich das hier machen soll.

Wäre über Hilfe sehr dankbar.
Gruß, Daniel.

        
Bezug
Lineare Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Di 28.04.2009
Autor: BBFan

Zwei verktoren stehen senkrecht aufeinander, falls ihr Skalarprodukt 0 ergibt. Damit kannst du dann auch für allgemeine Punkte rechnen.

Gruss
BBFan

Bezug
                
Bezug
Lineare Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Di 28.04.2009
Autor: daniel_90

So, hatte nur nen Denkfehler drin. Habe mir 2 Punkte auf der Geraden gesucht, daraus einen Richtungsvektor gebastelt, diesen mit [mm] \overrightarrow{PP'} [/mm] Skalar multipliziert und habe 0 raus. Könnte mir jetzt noch ejmand sagen, wie ich das geometrisch deuten soll?


Könnte man da schreiben, dass jeder beliebige Bildpunkt durch die Matrix an der Geraden gespiegelt werden? Würde das ausreichen?

Bezug
                        
Bezug
Lineare Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Di 28.04.2009
Autor: BBFan

:) mit beliebig ist nicht gemeint, dass du dir einen aussuchen darfst, sondern du sollst echt den Punkt P(u,v) nehmen. Geometrisch bedeutet dies, dass jeder Punkt an der Gerade gespiegelt wird (Spiegelbild kann etwas näher oder weiter von der Gerade entfernt liegen). Deshalb ist die Gerade uach Fixpunktgerade.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de