www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Lineare Dgls
Lineare Dgls < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Dgls: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:58 Do 26.06.2008
Autor: NemoAS

Aufgabe
Berechnen Sie die allgemeinen Lösungen der folgenden Dgls.

1) y''+3y'-4y=0

2) y''+3y'-4y=12

Hallo,

bei der ersten habe ich folgende Lösung erhalten:

1) y''+3y'-4y=0
[mm] P(x)=x^2+3x-4 [/mm]
Nullstelle 1: x1=1  
                   x2=-4

-> [mm] y(x)=c1*e^x+c2*e^-4x [/mm]

zu Nr.2) hier bin ich mir nicht sicher, was mit der 12 auf der rechten Seite passiert.
Ich würde sie auf die linke Seite bringen
y''+3y'-4y-12=0
wie sieht das charakteristische Polynom dazu aus?


        
Bezug
Lineare Dgls: Antwort
Status: (Antwort) fertig Status 
Datum: 01:10 Do 26.06.2008
Autor: leduart

Hallo
> Berechnen Sie die allgemeinen Lösungen der folgenden Dgls.
>  
> 1) y''+3y'-4y=0
>  
> 2) y''+3y'-4y=12
>  Hallo,
>  
> bei der ersten habe ich folgende Lösung erhalten:
>  
> 1) y''+3y'-4y=0
>  [mm]P(x)=x^2+3x-4[/mm]
>  Nullstelle 1: x1=1  
> x2=-4
>  
> -> [mm]y(x)=c1*e^x+c2*e^-4x[/mm]

Alles richtig

> zu Nr.2) hier bin ich mir nicht sicher, was mit der 12 auf
> der rechten Seite passiert.
>  Ich würde sie auf die linke Seite bringen
>  y''+3y'-4y-12=0
>  wie sieht das charakteristische Polynom dazu aus?

Nein, das ist der falsche Weg.
Das ist ne sog. inhomogene Dgl. Man löst erst die homogene Dgl. also  
y''+3y'-4y=0
Dann addiert man eine erratene sog. partikuläre oder spezielle Lösung der inhomogenen Dgl.
Dazu machst du hier den Ansatz y=A , differenzierst! also y'=0 usw. setzt in die Dgl. ein und bestimmst A.
Die allgemeine Lösung der inhom. DGL ist dann die Summe aus der allg. Lösg der homogenen+ der speziellen der inhomogenen.
Gruss leduart


Bezug
                
Bezug
Lineare Dgls: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:54 Do 26.06.2008
Autor: NemoAS

Hallo leduart,

vielen Dank für deine Antwort.
Das homogene Dgl hab ich jetzt mal gelöst,
y''+3y'-4y=12
[mm] x^2+3x-4=0 [/mm]
daraus folgt
x1=1
x2=-4

[mm] y1(x)=e^x [/mm]
y2(x)=e^-4x

[mm] c(x)=c1*e^x+c2*e^-4x [/mm]

dann hatte ich mich nach folgender Link versucht
http://www.chemgapedia.de/vsengine/vlu/vsc/de/ma/1/mc/ma_13/ma_13_02/ma_13_02_07.vlu/Page/vsc/de/ma/1/mc/ma_13/ma_13_02/me_13_02_05.vscml.html

bin aber noch nicht richtig weiter gekommen

c1,c2=beliebig
yp(x)=u(x)*y1(x)+v(x)*y2(x)
Unter Verwendung der Wronski-Determinante
W(y1,y2)=y1 y2'-y2 y1'
[mm] =e^x*-4e^-4x+e^-4x+e^x [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de