www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Lineare Gleichungssysteme
Lineare Gleichungssysteme < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Gleichungssysteme: Benötige Hilfe
Status: (Frage) beantwortet Status 
Datum: 21:27 Di 10.05.2005
Autor: Blume123

Hallo!
Ich habe hier zwei Aufgaben, bei denen ich nicht so ganz durchblicke.

1. In den folgenden Zahlenrätseln ins n eine dreistellige Zahl. Bestimmen sie jeweils alle natürlichen Zahlen mit den angegebenen Eigenschaftem!
a) Die Quersumme von n ist 12. Schreibt man die Ziffern von n in umgekehrter Reihenfolge, so ergibt sich 24 weniger als das Dreifache von n.
b) Die letzte Ziffer ist um 2 größer als die erste. Lässt man die erste Ziffer weg und multipliziert mit 8, so erhäl man 15 mehr als n.

zu a): also man könnte ja vielleicht jeweils die einzelnen Zahlen von n mit a, b und c benennen.
Dann wäre es so:
a+b+c= 12
dann kommt schon das erste Problem auf: 3* n= cba-24 oder wie, aber damit kann ich ja kein Gleichungssystem aufstellen?!

zu b) 2+c=a und bc*8=15+n
aber wie mache ich dann weiter?


2. Bestimmen sie eine Darstellung der Lösungsmenge L und prüfen sie, ob T=L gilt.
2a+4b-c-d=0
a+b-2c+2d=0
T=(r(-7;3;-2;0/r Element aus R)

Zur Darstellung der Lösungsmenge komme ich wohl:

L= (-3/4 + 1,75 s+1/2 r; 3/2 - 2,5 s; r; s)
Und wie mache ich dann weiter? Stimmt mein Ergebnis überhaupt?

Würde mich echt freuen, wenn mir jemand helfen kann
LG Blume

        
Bezug
Lineare Gleichungssysteme: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 21:47 Di 10.05.2005
Autor: informix

Hallo Blume,
> Hallo!
>  Ich habe hier zwei Aufgaben, bei denen ich nicht so ganz
> durchblicke.

Du erhöhst die Wahrscheinlichkeit, dass sich jemand deiner Aufgaben annimmt, ungemein,
indem du für jede Aufgabe einen neuen Diskussionsstrang anfängst.
Lies bitte mal unsere Forenregeln durch!

> 1. In den folgenden Zahlenrätseln ins n eine dreistellige
> Zahl. Bestimmen sie jeweils alle natürlichen Zahlen mit den
> angegebenen Eigenschaftem!
>  a) Die Quersumme von n ist 12. Schreibt man die Ziffern
> von n in umgekehrter Reihenfolge, so ergibt sich 24 weniger
> als das Dreifache von n.
>  b) Die letzte Ziffer ist um 2 größer als die erste. Lässt
> man die erste Ziffer weg und multipliziert mit 8, so erhäl
> man 15 mehr als n.
>  
> zu a): also man könnte ja vielleicht jeweils die einzelnen
> Zahlen von n mit a, b und c benennen. [ok]
>  Dann wäre es so:
>  a+b+c= 12
>  dann kommt schon das erste Problem auf: 3* n= cba-24 oder [notok]
> wie, aber damit kann ich ja kein Gleichungssystem
> aufstellen?!
>  

n = 100a + 10b + c
3*n -24 = 100c + 10b + a ; die neue Zahl ist kleiner als 3n !

Mit dem Eisetzverfahren kannst du in der 2. Gleichung n ersetzen,
es bleibt eine Gleichung mit immer noch 3 Variablen.
Für zwei von ihnen setzt du mal probehalber jeweils eine natürliche Zahl ein und schaust mal, was dann für die dritte herauskommt.
Kommst du jetzt alleine weiter?

> zu b) 2+c=a und bc*8=15+n [notok]

hier ist a offenbar um 2 größer als c !

es gilt wieder n = 100a + 10b + c

> man die erste Ziffer weg und multipliziert mit 8, so erhält man 15 mehr als n.
>  aber wie mache ich dann weiter?

schaffst du's jetzt?


Bezug
        
Bezug
Lineare Gleichungssysteme: zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 22:42 Di 10.05.2005
Autor: zoe

Hallo Blume,
wenn du deine Lösung in eine der beiden Gleichungen einsetzt, dann kannst du überprüfen, ob die Lösung richtig ist.

Ich nehme einmal die zweite Gleichung mit deinem Ergebnis:

a + b - 2c + 2d = 0

(- [mm] \bruch{3}{4} [/mm] + 1,75s + [mm] \bruch{1}{2}r)+( \bruch{3}{2} [/mm] - 2,5s)- 2r + 2s = 0
-0,75 + 1,75s + 0,5r + 1,5 - 2,5s - 2r + 2s = 0
0,75 - 1,5r + 1,25s  [mm] \not= [/mm] 0

und damit nicht richtig.

Liebe Grüße von zoe



Bezug
                
Bezug
Lineare Gleichungssysteme: Ergänzung zu Frage 2 (LGS)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:44 Mi 11.05.2005
Autor: zoe

Hallo Blume,
mir ist eben aufgefallen, dass du noch eine zweite Frage gestellt hast.

Ich nehme an, dass du die Berechnung an und für sich des Lösungsvektors L richtig gemacht hast. Du hast 4 Unbekannte und 2 Gleichungen => du kannst 2 Variablen wählen und bekommst so den Lösungsvektor heraus.

Wenn du diesen Lösungsvektor L hast, dann bleibt noch die Teilaufgabe, ob der angegebene Vektor T, diesem Lösungsvektor L entspricht.

Ohne probiert zu haben, würde ich

L = T setzen. Dann hast du auf der einen Seite die Variable r und auf der anderen Seite die Variablen r und s. Dort musst du überprüfen, ob es ein s gibt, welches die Gleichung erfüllt.

Liebe Grüße von zoe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de