www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Lineare Gleichungssysteme
Lineare Gleichungssysteme < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Gleichungssysteme: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 15:15 Sa 06.11.2010
Autor: Mathegirl

Aufgabe
bestimme die Lösungsmenge des LGS in Abhängigkeit von a!

2x+y+4z=2
6x+2y+(a+8)z=5
10x+4y+(a²+16)z= a+8




so...ich habe durch eliminieren folgendes erhalten:

2x+y+4z=2
0x-1y-4z+az=-1
0x+0y+a³z= -1+a

a³z=-1+a
z= [mm] \bruch{-1+a}{a^3} [/mm]

so und jetzt komme ich nicht weiter...stimmt das soweit überhaupt??

LG mathegirl

        
Bezug
Lineare Gleichungssysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Sa 06.11.2010
Autor: M.Rex

Hallo

Leider hast du den Weg nicht mit angegeben,

Du hast:

[mm] \vmat{2x+y+4z=2\\ 6x+2y+(a+8)z=5\\ 10x+4y+(a^{2}+16)z=a+8} [/mm]
[mm] \gdw\vmat{2x+y+4z=2\\ y+(12-(a+8))z=1\\ y+(20-(a^{2}+16))z=20-(a+8)} [/mm]
[mm] \gdw\vmat{2x+y+4z=2\\ y+(4-a)z=1\\ y+(4-a^{2})z=12-a} [/mm]
[mm] \gdw\vmat{2x+y+4z=2\\ y+(4-a)z=1\\ ((4-a)-(4-a^{2})z=1-(12-a)} [/mm]
[mm] \gdw\vmat{2x+y+4z=2\\ y+(4-a)z=1\\ (-a-a^{2})z=1-(12-a)} [/mm]

Jetzt kannst du aus der letzten Gleichung z bestimmen, und das dann in die zweite, um y zu bestimmen, und mit dem z und y dann x aus Gl1.

Beachte aber, dass die umformung

[mm] (-a-a^{2})z=1-(12-a) [/mm]
[mm] \gdw z=\bruch{a-11}{-a-a^{2}} [/mm] nur erlaubt ist, wenn [mm] -a^{2}-a\ne0, [/mm] also musst du die Falle

[mm] -a^{2}-a=0\gdw-a(a+1)=0\Rightarrow a_{1}=0 [/mm] und [mm] a_{2}=-1 [/mm] gesondert betrachten.

Marius





Bezug
        
Bezug
Lineare Gleichungssysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 So 07.11.2010
Autor: dfx

Hi ihr,

mir ist da bei M.Rex ein Fehler aufgefallen. Das hat schon ein Weilchen gedauert bei dieser Schreibweise. Nicht nur, dass er in einer Zeile eine Klammer vergaß zu schließen, nein, bei seiner ersten Umformung in der zweiten Zeile hat er sich am Ende meiner Ansicht nach verrechnet. ;>

Nun, mathegirl, ich verstehe leider auch nicht, wie du auf [mm] a^{3} [/mm] zum Ende hin kommst. Du solltest dich nochmal intensiver mit den elementaren Transformationen auseinandersetzen. Daher zeig ich mal meinen Weg auf, der M.Rex Lösung bis auf die kleinen Schnitzer soweit ähneln sollte, wie es Matrix und LGS Schreibweise eben tun:

[mm] \pmat{ 2 & 1 & 4 & 2 \\ 6 & 2 & a+8 & 5 \\ 10 & 4 & a^{2}+16 & a+8 } \pmat{ 2 & 1 & 4 & 2 \\ 0 & -1 & a-4 & -1 \\ 0 & -1 & a^{2}-4 & a-2 } \pmat{ 2 & 1 & 4 & 2 \\ 0 & -1 & a-4 & -1 \\ 0 & 0 & a^{2}-a & a-1 } [/mm]

Betrachten wir nun die letzte Zeile, der letzten Matrix in Treppenform.

[mm] (a^{2} [/mm] - a) z = a - 1

Bei genauem Hinsehen und einigen Einsetzversuchen stellen wir fest, die Gleichung weist uns mehrere Fälle zu näherer Betrachtung, wie von M.Rex bereits beschrieben.

Fall (i): a = 0
Fall (ii): a = 1, Setze z = k, k [mm] \in \IR [/mm]
Fall (iii): a [mm] \in \IR [/mm] \ {0, 1}

gruss, dfx


EDIT#1: Ich reiche mal meine Lösungsmengen nach:

zu (i): [mm] \IL [/mm] = {}
zu (ii): [mm] \IL [/mm] = { [mm] \pmat{ \bruch{1-k}{2} \\ 1-3k \\ k } [/mm] | [mm] k\in \IR [/mm] }
zu (iii): [mm] \IL [/mm] = { [mm] \pmat{ \bruch{1}{2} \\ \bruch{a^{2}-5a+4}{a^{2}-a \\ \bruch{a-1}{a^{2}-a} } } [/mm] | a [mm] \in \IR [/mm] \ {0, 1}}

EDIT#2: Ich habe den Beitrag massiv gekürzt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de