www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Lineare Hülle von Vektoren
Lineare Hülle von Vektoren < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Hülle von Vektoren: Kombination von Lin(Vektoren)
Status: (Frage) beantwortet Status 
Datum: 18:54 Mi 22.10.2008
Autor: TheTim

Aufgabe
V ist ein Vektorraum über K. Überprüfe folgende Behauptungen für beliebige Teilmengen [mm] M_1 [/mm] und [mm] M_2 [/mm] von V.

a) [mm] Lin(M_1 \cup M_2)=Lin(M_1)+Lin(M_2) [/mm]
b) [mm] Lin(M_1 \cap M_2)=Lin(M_1) \cap Lin(M_2) [/mm]

Mir fehlt hier irgendwie der Ansatz. Woher weiß ich, was [mm] Lin(M_1 \cup M_2) [/mm] und [mm] Lin(M_1 \cap M_2) [/mm] und [mm] Lin(M_1) \cap Lin(M_2) [/mm] ist...

        
Bezug
Lineare Hülle von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Mi 22.10.2008
Autor: pelzig


> a) [mm]Lin(M_1 \cup M_2)=Lin(M_1)+Lin(M_2)[/mm]
> b) [mm]Lin(M_1 \cap M_2)=Lin(M_1) \cap Lin(M_2)[/mm]
>  
> Mir fehlt hier irgendwie der Ansatz. Woher weiß ich, was
> [mm]Lin(M_1 \cup M_2)[/mm] und [mm]Lin(M_1 \cap M_2)[/mm] und [mm]Lin(M_1) \cap Lin(M_2)[/mm] ist...

Ok also als erstes solltest du dir mal ne Vermutung überlegen, welche der Aussagen vielleicht wahr ist und welche falsch. Falls du denkst eine Aussage ist falsch, dann versuche dir ein Gegenbeispiel zu überlegen. Wenn du beweisen willst, dass zwei Mengen gleich sind, dann musst du zeigen, dass jede in beide in der jeweils anderen enthalten sind, d.h. [mm] $$A=B\gdw A\subset B\wedge A\supset [/mm] B$$ Wie aber beweist man, dass [mm]A\subset B[/mm] ist? Dazu sagt man sich einfach "Sei [mm]a\in A[/mm] beliebig" und muss dann folgern, dass auch [mm] $a\in [/mm] B$ liegt.

z.B. bei Aufgabe a): Ich will zeigen dass [mm] $Lin(M_1\cup M_2)\subset Lin(M_1)+Lin(M_2$ [/mm] ist. Also nehme ich mir mal einen beliebigen Vektor [mm] $v\in Lin(M_1\cup M_2)$, [/mm] das heißt nach Definition der Linearen Hülle, dass v sich so schreiben lässt: [mm] $$v=\sum_{u\in M_1\cup M_2}\lambda_u\cdot [/mm] m$$ Wir wollen zeigen, dass dann v auch in [mm] $Lin(M_1)+ Lin(M_2)$ [/mm] ist, d.h. wir müssen v schreiben in der Form [mm] $$v=\left(\sum_{v\in M_1}\lambda_v\cdot m\right)+\left(\sum_{w\in M_2}\lambda_w\cdot w\right)$$ [/mm] Wir müssten also die erste Summe irgendwie aufteilen, dann denk mal scharf nach wie und warum man das machen darf ;-)

Gruß, Robert

Bezug
                
Bezug
Lineare Hülle von Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:33 Mi 22.10.2008
Autor: TheTim

Danke für diese sehr gute und ausführliche Erklärung, Robert

Ich muss aufgrund einer Krankheit vorerst daheim bleiben und dieses Forum hilft mir, trotzdem die wöchentlichen Übungsblätter zu bearbeiten.

Viele Grüße,
Tim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de